| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq2 |
|- ( x = 0 -> ( ( _I |` A ) ^r x ) = ( ( _I |` A ) ^r 0 ) ) |
| 2 |
1
|
eqeq1d |
|- ( x = 0 -> ( ( ( _I |` A ) ^r x ) = ( _I |` A ) <-> ( ( _I |` A ) ^r 0 ) = ( _I |` A ) ) ) |
| 3 |
2
|
imbi2d |
|- ( x = 0 -> ( ( A e. V -> ( ( _I |` A ) ^r x ) = ( _I |` A ) ) <-> ( A e. V -> ( ( _I |` A ) ^r 0 ) = ( _I |` A ) ) ) ) |
| 4 |
|
oveq2 |
|- ( x = y -> ( ( _I |` A ) ^r x ) = ( ( _I |` A ) ^r y ) ) |
| 5 |
4
|
eqeq1d |
|- ( x = y -> ( ( ( _I |` A ) ^r x ) = ( _I |` A ) <-> ( ( _I |` A ) ^r y ) = ( _I |` A ) ) ) |
| 6 |
5
|
imbi2d |
|- ( x = y -> ( ( A e. V -> ( ( _I |` A ) ^r x ) = ( _I |` A ) ) <-> ( A e. V -> ( ( _I |` A ) ^r y ) = ( _I |` A ) ) ) ) |
| 7 |
|
oveq2 |
|- ( x = ( y + 1 ) -> ( ( _I |` A ) ^r x ) = ( ( _I |` A ) ^r ( y + 1 ) ) ) |
| 8 |
7
|
eqeq1d |
|- ( x = ( y + 1 ) -> ( ( ( _I |` A ) ^r x ) = ( _I |` A ) <-> ( ( _I |` A ) ^r ( y + 1 ) ) = ( _I |` A ) ) ) |
| 9 |
8
|
imbi2d |
|- ( x = ( y + 1 ) -> ( ( A e. V -> ( ( _I |` A ) ^r x ) = ( _I |` A ) ) <-> ( A e. V -> ( ( _I |` A ) ^r ( y + 1 ) ) = ( _I |` A ) ) ) ) |
| 10 |
|
oveq2 |
|- ( x = N -> ( ( _I |` A ) ^r x ) = ( ( _I |` A ) ^r N ) ) |
| 11 |
10
|
eqeq1d |
|- ( x = N -> ( ( ( _I |` A ) ^r x ) = ( _I |` A ) <-> ( ( _I |` A ) ^r N ) = ( _I |` A ) ) ) |
| 12 |
11
|
imbi2d |
|- ( x = N -> ( ( A e. V -> ( ( _I |` A ) ^r x ) = ( _I |` A ) ) <-> ( A e. V -> ( ( _I |` A ) ^r N ) = ( _I |` A ) ) ) ) |
| 13 |
|
resiexg |
|- ( A e. V -> ( _I |` A ) e. _V ) |
| 14 |
|
relexp0g |
|- ( ( _I |` A ) e. _V -> ( ( _I |` A ) ^r 0 ) = ( _I |` ( dom ( _I |` A ) u. ran ( _I |` A ) ) ) ) |
| 15 |
13 14
|
syl |
|- ( A e. V -> ( ( _I |` A ) ^r 0 ) = ( _I |` ( dom ( _I |` A ) u. ran ( _I |` A ) ) ) ) |
| 16 |
|
dmresi |
|- dom ( _I |` A ) = A |
| 17 |
|
rnresi |
|- ran ( _I |` A ) = A |
| 18 |
16 17
|
uneq12i |
|- ( dom ( _I |` A ) u. ran ( _I |` A ) ) = ( A u. A ) |
| 19 |
|
unidm |
|- ( A u. A ) = A |
| 20 |
18 19
|
eqtri |
|- ( dom ( _I |` A ) u. ran ( _I |` A ) ) = A |
| 21 |
20
|
reseq2i |
|- ( _I |` ( dom ( _I |` A ) u. ran ( _I |` A ) ) ) = ( _I |` A ) |
| 22 |
15 21
|
eqtrdi |
|- ( A e. V -> ( ( _I |` A ) ^r 0 ) = ( _I |` A ) ) |
| 23 |
|
relres |
|- Rel ( _I |` A ) |
| 24 |
23
|
a1i |
|- ( ( ( ( _I |` A ) ^r y ) = ( _I |` A ) /\ A e. V /\ y e. NN0 ) -> Rel ( _I |` A ) ) |
| 25 |
|
simp3 |
|- ( ( ( ( _I |` A ) ^r y ) = ( _I |` A ) /\ A e. V /\ y e. NN0 ) -> y e. NN0 ) |
| 26 |
24 25
|
relexpsucrd |
|- ( ( ( ( _I |` A ) ^r y ) = ( _I |` A ) /\ A e. V /\ y e. NN0 ) -> ( ( _I |` A ) ^r ( y + 1 ) ) = ( ( ( _I |` A ) ^r y ) o. ( _I |` A ) ) ) |
| 27 |
|
simp1 |
|- ( ( ( ( _I |` A ) ^r y ) = ( _I |` A ) /\ A e. V /\ y e. NN0 ) -> ( ( _I |` A ) ^r y ) = ( _I |` A ) ) |
| 28 |
27
|
coeq1d |
|- ( ( ( ( _I |` A ) ^r y ) = ( _I |` A ) /\ A e. V /\ y e. NN0 ) -> ( ( ( _I |` A ) ^r y ) o. ( _I |` A ) ) = ( ( _I |` A ) o. ( _I |` A ) ) ) |
| 29 |
|
coires1 |
|- ( ( _I |` A ) o. ( _I |` A ) ) = ( ( _I |` A ) |` A ) |
| 30 |
|
residm |
|- ( ( _I |` A ) |` A ) = ( _I |` A ) |
| 31 |
29 30
|
eqtri |
|- ( ( _I |` A ) o. ( _I |` A ) ) = ( _I |` A ) |
| 32 |
28 31
|
eqtrdi |
|- ( ( ( ( _I |` A ) ^r y ) = ( _I |` A ) /\ A e. V /\ y e. NN0 ) -> ( ( ( _I |` A ) ^r y ) o. ( _I |` A ) ) = ( _I |` A ) ) |
| 33 |
26 32
|
eqtrd |
|- ( ( ( ( _I |` A ) ^r y ) = ( _I |` A ) /\ A e. V /\ y e. NN0 ) -> ( ( _I |` A ) ^r ( y + 1 ) ) = ( _I |` A ) ) |
| 34 |
33
|
3exp |
|- ( ( ( _I |` A ) ^r y ) = ( _I |` A ) -> ( A e. V -> ( y e. NN0 -> ( ( _I |` A ) ^r ( y + 1 ) ) = ( _I |` A ) ) ) ) |
| 35 |
34
|
com13 |
|- ( y e. NN0 -> ( A e. V -> ( ( ( _I |` A ) ^r y ) = ( _I |` A ) -> ( ( _I |` A ) ^r ( y + 1 ) ) = ( _I |` A ) ) ) ) |
| 36 |
35
|
a2d |
|- ( y e. NN0 -> ( ( A e. V -> ( ( _I |` A ) ^r y ) = ( _I |` A ) ) -> ( A e. V -> ( ( _I |` A ) ^r ( y + 1 ) ) = ( _I |` A ) ) ) ) |
| 37 |
3 6 9 12 22 36
|
nn0ind |
|- ( N e. NN0 -> ( A e. V -> ( ( _I |` A ) ^r N ) = ( _I |` A ) ) ) |
| 38 |
37
|
impcom |
|- ( ( A e. V /\ N e. NN0 ) -> ( ( _I |` A ) ^r N ) = ( _I |` A ) ) |