Step |
Hyp |
Ref |
Expression |
1 |
|
relexpss1d.a |
|- ( ph -> A C_ B ) |
2 |
|
relexpss1d.b |
|- ( ph -> B e. _V ) |
3 |
|
relexpss1d.n |
|- ( ph -> N e. NN0 ) |
4 |
|
elnn0 |
|- ( N e. NN0 <-> ( N e. NN \/ N = 0 ) ) |
5 |
3 4
|
sylib |
|- ( ph -> ( N e. NN \/ N = 0 ) ) |
6 |
|
oveq2 |
|- ( x = 1 -> ( A ^r x ) = ( A ^r 1 ) ) |
7 |
|
oveq2 |
|- ( x = 1 -> ( B ^r x ) = ( B ^r 1 ) ) |
8 |
6 7
|
sseq12d |
|- ( x = 1 -> ( ( A ^r x ) C_ ( B ^r x ) <-> ( A ^r 1 ) C_ ( B ^r 1 ) ) ) |
9 |
8
|
imbi2d |
|- ( x = 1 -> ( ( ph -> ( A ^r x ) C_ ( B ^r x ) ) <-> ( ph -> ( A ^r 1 ) C_ ( B ^r 1 ) ) ) ) |
10 |
|
oveq2 |
|- ( x = y -> ( A ^r x ) = ( A ^r y ) ) |
11 |
|
oveq2 |
|- ( x = y -> ( B ^r x ) = ( B ^r y ) ) |
12 |
10 11
|
sseq12d |
|- ( x = y -> ( ( A ^r x ) C_ ( B ^r x ) <-> ( A ^r y ) C_ ( B ^r y ) ) ) |
13 |
12
|
imbi2d |
|- ( x = y -> ( ( ph -> ( A ^r x ) C_ ( B ^r x ) ) <-> ( ph -> ( A ^r y ) C_ ( B ^r y ) ) ) ) |
14 |
|
oveq2 |
|- ( x = ( y + 1 ) -> ( A ^r x ) = ( A ^r ( y + 1 ) ) ) |
15 |
|
oveq2 |
|- ( x = ( y + 1 ) -> ( B ^r x ) = ( B ^r ( y + 1 ) ) ) |
16 |
14 15
|
sseq12d |
|- ( x = ( y + 1 ) -> ( ( A ^r x ) C_ ( B ^r x ) <-> ( A ^r ( y + 1 ) ) C_ ( B ^r ( y + 1 ) ) ) ) |
17 |
16
|
imbi2d |
|- ( x = ( y + 1 ) -> ( ( ph -> ( A ^r x ) C_ ( B ^r x ) ) <-> ( ph -> ( A ^r ( y + 1 ) ) C_ ( B ^r ( y + 1 ) ) ) ) ) |
18 |
|
oveq2 |
|- ( x = N -> ( A ^r x ) = ( A ^r N ) ) |
19 |
|
oveq2 |
|- ( x = N -> ( B ^r x ) = ( B ^r N ) ) |
20 |
18 19
|
sseq12d |
|- ( x = N -> ( ( A ^r x ) C_ ( B ^r x ) <-> ( A ^r N ) C_ ( B ^r N ) ) ) |
21 |
20
|
imbi2d |
|- ( x = N -> ( ( ph -> ( A ^r x ) C_ ( B ^r x ) ) <-> ( ph -> ( A ^r N ) C_ ( B ^r N ) ) ) ) |
22 |
2 1
|
ssexd |
|- ( ph -> A e. _V ) |
23 |
22
|
relexp1d |
|- ( ph -> ( A ^r 1 ) = A ) |
24 |
2
|
relexp1d |
|- ( ph -> ( B ^r 1 ) = B ) |
25 |
1 23 24
|
3sstr4d |
|- ( ph -> ( A ^r 1 ) C_ ( B ^r 1 ) ) |
26 |
|
simp3 |
|- ( ( y e. NN /\ ph /\ ( A ^r y ) C_ ( B ^r y ) ) -> ( A ^r y ) C_ ( B ^r y ) ) |
27 |
1
|
3ad2ant2 |
|- ( ( y e. NN /\ ph /\ ( A ^r y ) C_ ( B ^r y ) ) -> A C_ B ) |
28 |
26 27
|
coss12d |
|- ( ( y e. NN /\ ph /\ ( A ^r y ) C_ ( B ^r y ) ) -> ( ( A ^r y ) o. A ) C_ ( ( B ^r y ) o. B ) ) |
29 |
22
|
3ad2ant2 |
|- ( ( y e. NN /\ ph /\ ( A ^r y ) C_ ( B ^r y ) ) -> A e. _V ) |
30 |
|
simp1 |
|- ( ( y e. NN /\ ph /\ ( A ^r y ) C_ ( B ^r y ) ) -> y e. NN ) |
31 |
|
relexpsucnnr |
|- ( ( A e. _V /\ y e. NN ) -> ( A ^r ( y + 1 ) ) = ( ( A ^r y ) o. A ) ) |
32 |
29 30 31
|
syl2anc |
|- ( ( y e. NN /\ ph /\ ( A ^r y ) C_ ( B ^r y ) ) -> ( A ^r ( y + 1 ) ) = ( ( A ^r y ) o. A ) ) |
33 |
2
|
3ad2ant2 |
|- ( ( y e. NN /\ ph /\ ( A ^r y ) C_ ( B ^r y ) ) -> B e. _V ) |
34 |
|
relexpsucnnr |
|- ( ( B e. _V /\ y e. NN ) -> ( B ^r ( y + 1 ) ) = ( ( B ^r y ) o. B ) ) |
35 |
33 30 34
|
syl2anc |
|- ( ( y e. NN /\ ph /\ ( A ^r y ) C_ ( B ^r y ) ) -> ( B ^r ( y + 1 ) ) = ( ( B ^r y ) o. B ) ) |
36 |
28 32 35
|
3sstr4d |
|- ( ( y e. NN /\ ph /\ ( A ^r y ) C_ ( B ^r y ) ) -> ( A ^r ( y + 1 ) ) C_ ( B ^r ( y + 1 ) ) ) |
37 |
36
|
3exp |
|- ( y e. NN -> ( ph -> ( ( A ^r y ) C_ ( B ^r y ) -> ( A ^r ( y + 1 ) ) C_ ( B ^r ( y + 1 ) ) ) ) ) |
38 |
37
|
a2d |
|- ( y e. NN -> ( ( ph -> ( A ^r y ) C_ ( B ^r y ) ) -> ( ph -> ( A ^r ( y + 1 ) ) C_ ( B ^r ( y + 1 ) ) ) ) ) |
39 |
9 13 17 21 25 38
|
nnind |
|- ( N e. NN -> ( ph -> ( A ^r N ) C_ ( B ^r N ) ) ) |
40 |
|
simpr |
|- ( ( N = 0 /\ ph ) -> ph ) |
41 |
|
dmss |
|- ( A C_ B -> dom A C_ dom B ) |
42 |
|
rnss |
|- ( A C_ B -> ran A C_ ran B ) |
43 |
41 42
|
jca |
|- ( A C_ B -> ( dom A C_ dom B /\ ran A C_ ran B ) ) |
44 |
|
unss12 |
|- ( ( dom A C_ dom B /\ ran A C_ ran B ) -> ( dom A u. ran A ) C_ ( dom B u. ran B ) ) |
45 |
1 43 44
|
3syl |
|- ( ph -> ( dom A u. ran A ) C_ ( dom B u. ran B ) ) |
46 |
|
ssres2 |
|- ( ( dom A u. ran A ) C_ ( dom B u. ran B ) -> ( _I |` ( dom A u. ran A ) ) C_ ( _I |` ( dom B u. ran B ) ) ) |
47 |
40 45 46
|
3syl |
|- ( ( N = 0 /\ ph ) -> ( _I |` ( dom A u. ran A ) ) C_ ( _I |` ( dom B u. ran B ) ) ) |
48 |
|
simpl |
|- ( ( N = 0 /\ ph ) -> N = 0 ) |
49 |
48
|
oveq2d |
|- ( ( N = 0 /\ ph ) -> ( A ^r N ) = ( A ^r 0 ) ) |
50 |
|
relexp0g |
|- ( A e. _V -> ( A ^r 0 ) = ( _I |` ( dom A u. ran A ) ) ) |
51 |
40 22 50
|
3syl |
|- ( ( N = 0 /\ ph ) -> ( A ^r 0 ) = ( _I |` ( dom A u. ran A ) ) ) |
52 |
49 51
|
eqtrd |
|- ( ( N = 0 /\ ph ) -> ( A ^r N ) = ( _I |` ( dom A u. ran A ) ) ) |
53 |
48
|
oveq2d |
|- ( ( N = 0 /\ ph ) -> ( B ^r N ) = ( B ^r 0 ) ) |
54 |
|
relexp0g |
|- ( B e. _V -> ( B ^r 0 ) = ( _I |` ( dom B u. ran B ) ) ) |
55 |
40 2 54
|
3syl |
|- ( ( N = 0 /\ ph ) -> ( B ^r 0 ) = ( _I |` ( dom B u. ran B ) ) ) |
56 |
53 55
|
eqtrd |
|- ( ( N = 0 /\ ph ) -> ( B ^r N ) = ( _I |` ( dom B u. ran B ) ) ) |
57 |
47 52 56
|
3sstr4d |
|- ( ( N = 0 /\ ph ) -> ( A ^r N ) C_ ( B ^r N ) ) |
58 |
57
|
ex |
|- ( N = 0 -> ( ph -> ( A ^r N ) C_ ( B ^r N ) ) ) |
59 |
39 58
|
jaoi |
|- ( ( N e. NN \/ N = 0 ) -> ( ph -> ( A ^r N ) C_ ( B ^r N ) ) ) |
60 |
5 59
|
mpcom |
|- ( ph -> ( A ^r N ) C_ ( B ^r N ) ) |