Metamath Proof Explorer


Theorem relexpss1d

Description: The relational power of a subset is a subset. (Contributed by RP, 17-Jun-2020)

Ref Expression
Hypotheses relexpss1d.a φ A B
relexpss1d.b φ B V
relexpss1d.n φ N 0
Assertion relexpss1d φ A r N B r N

Proof

Step Hyp Ref Expression
1 relexpss1d.a φ A B
2 relexpss1d.b φ B V
3 relexpss1d.n φ N 0
4 elnn0 N 0 N N = 0
5 3 4 sylib φ N N = 0
6 oveq2 x = 1 A r x = A r 1
7 oveq2 x = 1 B r x = B r 1
8 6 7 sseq12d x = 1 A r x B r x A r 1 B r 1
9 8 imbi2d x = 1 φ A r x B r x φ A r 1 B r 1
10 oveq2 x = y A r x = A r y
11 oveq2 x = y B r x = B r y
12 10 11 sseq12d x = y A r x B r x A r y B r y
13 12 imbi2d x = y φ A r x B r x φ A r y B r y
14 oveq2 x = y + 1 A r x = A r y + 1
15 oveq2 x = y + 1 B r x = B r y + 1
16 14 15 sseq12d x = y + 1 A r x B r x A r y + 1 B r y + 1
17 16 imbi2d x = y + 1 φ A r x B r x φ A r y + 1 B r y + 1
18 oveq2 x = N A r x = A r N
19 oveq2 x = N B r x = B r N
20 18 19 sseq12d x = N A r x B r x A r N B r N
21 20 imbi2d x = N φ A r x B r x φ A r N B r N
22 2 1 ssexd φ A V
23 22 relexp1d φ A r 1 = A
24 2 relexp1d φ B r 1 = B
25 1 23 24 3sstr4d φ A r 1 B r 1
26 simp3 y φ A r y B r y A r y B r y
27 1 3ad2ant2 y φ A r y B r y A B
28 26 27 coss12d y φ A r y B r y A r y A B r y B
29 22 3ad2ant2 y φ A r y B r y A V
30 simp1 y φ A r y B r y y
31 relexpsucnnr A V y A r y + 1 = A r y A
32 29 30 31 syl2anc y φ A r y B r y A r y + 1 = A r y A
33 2 3ad2ant2 y φ A r y B r y B V
34 relexpsucnnr B V y B r y + 1 = B r y B
35 33 30 34 syl2anc y φ A r y B r y B r y + 1 = B r y B
36 28 32 35 3sstr4d y φ A r y B r y A r y + 1 B r y + 1
37 36 3exp y φ A r y B r y A r y + 1 B r y + 1
38 37 a2d y φ A r y B r y φ A r y + 1 B r y + 1
39 9 13 17 21 25 38 nnind N φ A r N B r N
40 simpr N = 0 φ φ
41 dmss A B dom A dom B
42 rnss A B ran A ran B
43 41 42 jca A B dom A dom B ran A ran B
44 unss12 dom A dom B ran A ran B dom A ran A dom B ran B
45 1 43 44 3syl φ dom A ran A dom B ran B
46 ssres2 dom A ran A dom B ran B I dom A ran A I dom B ran B
47 40 45 46 3syl N = 0 φ I dom A ran A I dom B ran B
48 simpl N = 0 φ N = 0
49 48 oveq2d N = 0 φ A r N = A r 0
50 relexp0g A V A r 0 = I dom A ran A
51 40 22 50 3syl N = 0 φ A r 0 = I dom A ran A
52 49 51 eqtrd N = 0 φ A r N = I dom A ran A
53 48 oveq2d N = 0 φ B r N = B r 0
54 relexp0g B V B r 0 = I dom B ran B
55 40 2 54 3syl N = 0 φ B r 0 = I dom B ran B
56 53 55 eqtrd N = 0 φ B r N = I dom B ran B
57 47 52 56 3sstr4d N = 0 φ A r N B r N
58 57 ex N = 0 φ A r N B r N
59 39 58 jaoi N N = 0 φ A r N B r N
60 5 59 mpcom φ A r N B r N