| Step |
Hyp |
Ref |
Expression |
| 1 |
|
relexpss1d.a |
|
| 2 |
|
relexpss1d.b |
|
| 3 |
|
relexpss1d.n |
|
| 4 |
|
elnn0 |
|
| 5 |
3 4
|
sylib |
|
| 6 |
|
oveq2 |
|
| 7 |
|
oveq2 |
|
| 8 |
6 7
|
sseq12d |
|
| 9 |
8
|
imbi2d |
|
| 10 |
|
oveq2 |
|
| 11 |
|
oveq2 |
|
| 12 |
10 11
|
sseq12d |
|
| 13 |
12
|
imbi2d |
|
| 14 |
|
oveq2 |
|
| 15 |
|
oveq2 |
|
| 16 |
14 15
|
sseq12d |
|
| 17 |
16
|
imbi2d |
|
| 18 |
|
oveq2 |
|
| 19 |
|
oveq2 |
|
| 20 |
18 19
|
sseq12d |
|
| 21 |
20
|
imbi2d |
|
| 22 |
2 1
|
ssexd |
|
| 23 |
22
|
relexp1d |
|
| 24 |
2
|
relexp1d |
|
| 25 |
1 23 24
|
3sstr4d |
|
| 26 |
|
simp3 |
|
| 27 |
1
|
3ad2ant2 |
|
| 28 |
26 27
|
coss12d |
|
| 29 |
22
|
3ad2ant2 |
|
| 30 |
|
simp1 |
|
| 31 |
|
relexpsucnnr |
|
| 32 |
29 30 31
|
syl2anc |
|
| 33 |
2
|
3ad2ant2 |
|
| 34 |
|
relexpsucnnr |
|
| 35 |
33 30 34
|
syl2anc |
|
| 36 |
28 32 35
|
3sstr4d |
|
| 37 |
36
|
3exp |
|
| 38 |
37
|
a2d |
|
| 39 |
9 13 17 21 25 38
|
nnind |
|
| 40 |
|
simpr |
|
| 41 |
|
dmss |
|
| 42 |
|
rnss |
|
| 43 |
41 42
|
jca |
|
| 44 |
|
unss12 |
|
| 45 |
1 43 44
|
3syl |
|
| 46 |
|
ssres2 |
|
| 47 |
40 45 46
|
3syl |
|
| 48 |
|
simpl |
|
| 49 |
48
|
oveq2d |
|
| 50 |
|
relexp0g |
|
| 51 |
40 22 50
|
3syl |
|
| 52 |
49 51
|
eqtrd |
|
| 53 |
48
|
oveq2d |
|
| 54 |
|
relexp0g |
|
| 55 |
40 2 54
|
3syl |
|
| 56 |
53 55
|
eqtrd |
|
| 57 |
47 52 56
|
3sstr4d |
|
| 58 |
57
|
ex |
|
| 59 |
39 58
|
jaoi |
|
| 60 |
5 59
|
mpcom |
|