| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elnn0 |
|- ( J e. NN0 <-> ( J e. NN \/ J = 0 ) ) |
| 2 |
|
elnn0 |
|- ( K e. NN0 <-> ( K e. NN \/ K = 0 ) ) |
| 3 |
|
relexpmulnn |
|- ( ( ( R e. V /\ I = ( J x. K ) ) /\ ( J e. NN /\ K e. NN ) ) -> ( ( R ^r J ) ^r K ) = ( R ^r I ) ) |
| 4 |
3
|
3adantl3 |
|- ( ( ( R e. V /\ I = ( J x. K ) /\ ( I = 0 -> J <_ K ) ) /\ ( J e. NN /\ K e. NN ) ) -> ( ( R ^r J ) ^r K ) = ( R ^r I ) ) |
| 5 |
4
|
expcom |
|- ( ( J e. NN /\ K e. NN ) -> ( ( R e. V /\ I = ( J x. K ) /\ ( I = 0 -> J <_ K ) ) -> ( ( R ^r J ) ^r K ) = ( R ^r I ) ) ) |
| 6 |
5
|
expcom |
|- ( K e. NN -> ( J e. NN -> ( ( R e. V /\ I = ( J x. K ) /\ ( I = 0 -> J <_ K ) ) -> ( ( R ^r J ) ^r K ) = ( R ^r I ) ) ) ) |
| 7 |
|
simprr |
|- ( ( ( K = 0 /\ J e. NN ) /\ ( R e. V /\ I = ( J x. K ) ) ) -> I = ( J x. K ) ) |
| 8 |
|
simpll |
|- ( ( ( K = 0 /\ J e. NN ) /\ ( R e. V /\ I = ( J x. K ) ) ) -> K = 0 ) |
| 9 |
8
|
oveq2d |
|- ( ( ( K = 0 /\ J e. NN ) /\ ( R e. V /\ I = ( J x. K ) ) ) -> ( J x. K ) = ( J x. 0 ) ) |
| 10 |
|
simplr |
|- ( ( ( K = 0 /\ J e. NN ) /\ ( R e. V /\ I = ( J x. K ) ) ) -> J e. NN ) |
| 11 |
10
|
nncnd |
|- ( ( ( K = 0 /\ J e. NN ) /\ ( R e. V /\ I = ( J x. K ) ) ) -> J e. CC ) |
| 12 |
11
|
mul01d |
|- ( ( ( K = 0 /\ J e. NN ) /\ ( R e. V /\ I = ( J x. K ) ) ) -> ( J x. 0 ) = 0 ) |
| 13 |
7 9 12
|
3eqtrd |
|- ( ( ( K = 0 /\ J e. NN ) /\ ( R e. V /\ I = ( J x. K ) ) ) -> I = 0 ) |
| 14 |
|
simpl |
|- ( ( ( K = 0 /\ J e. NN ) /\ ( R e. V /\ I = ( J x. K ) ) ) -> ( K = 0 /\ J e. NN ) ) |
| 15 |
|
nnnle0 |
|- ( J e. NN -> -. J <_ 0 ) |
| 16 |
15
|
adantl |
|- ( ( K = 0 /\ J e. NN ) -> -. J <_ 0 ) |
| 17 |
|
simpl |
|- ( ( K = 0 /\ J e. NN ) -> K = 0 ) |
| 18 |
17
|
breq2d |
|- ( ( K = 0 /\ J e. NN ) -> ( J <_ K <-> J <_ 0 ) ) |
| 19 |
16 18
|
mtbird |
|- ( ( K = 0 /\ J e. NN ) -> -. J <_ K ) |
| 20 |
14 19
|
syl |
|- ( ( ( K = 0 /\ J e. NN ) /\ ( R e. V /\ I = ( J x. K ) ) ) -> -. J <_ K ) |
| 21 |
13 20
|
jcnd |
|- ( ( ( K = 0 /\ J e. NN ) /\ ( R e. V /\ I = ( J x. K ) ) ) -> -. ( I = 0 -> J <_ K ) ) |
| 22 |
21
|
pm2.21d |
|- ( ( ( K = 0 /\ J e. NN ) /\ ( R e. V /\ I = ( J x. K ) ) ) -> ( ( I = 0 -> J <_ K ) -> ( ( R ^r J ) ^r K ) = ( R ^r I ) ) ) |
| 23 |
22
|
exp32 |
|- ( ( K = 0 /\ J e. NN ) -> ( R e. V -> ( I = ( J x. K ) -> ( ( I = 0 -> J <_ K ) -> ( ( R ^r J ) ^r K ) = ( R ^r I ) ) ) ) ) |
| 24 |
23
|
3impd |
|- ( ( K = 0 /\ J e. NN ) -> ( ( R e. V /\ I = ( J x. K ) /\ ( I = 0 -> J <_ K ) ) -> ( ( R ^r J ) ^r K ) = ( R ^r I ) ) ) |
| 25 |
24
|
ex |
|- ( K = 0 -> ( J e. NN -> ( ( R e. V /\ I = ( J x. K ) /\ ( I = 0 -> J <_ K ) ) -> ( ( R ^r J ) ^r K ) = ( R ^r I ) ) ) ) |
| 26 |
6 25
|
jaoi |
|- ( ( K e. NN \/ K = 0 ) -> ( J e. NN -> ( ( R e. V /\ I = ( J x. K ) /\ ( I = 0 -> J <_ K ) ) -> ( ( R ^r J ) ^r K ) = ( R ^r I ) ) ) ) |
| 27 |
2 26
|
sylbi |
|- ( K e. NN0 -> ( J e. NN -> ( ( R e. V /\ I = ( J x. K ) /\ ( I = 0 -> J <_ K ) ) -> ( ( R ^r J ) ^r K ) = ( R ^r I ) ) ) ) |
| 28 |
|
simplr |
|- ( ( ( K e. NN0 /\ J = 0 ) /\ ( R e. V /\ I = ( J x. K ) /\ ( I = 0 -> J <_ K ) ) ) -> J = 0 ) |
| 29 |
28
|
oveq2d |
|- ( ( ( K e. NN0 /\ J = 0 ) /\ ( R e. V /\ I = ( J x. K ) /\ ( I = 0 -> J <_ K ) ) ) -> ( R ^r J ) = ( R ^r 0 ) ) |
| 30 |
|
simpr1 |
|- ( ( ( K e. NN0 /\ J = 0 ) /\ ( R e. V /\ I = ( J x. K ) /\ ( I = 0 -> J <_ K ) ) ) -> R e. V ) |
| 31 |
|
relexp0g |
|- ( R e. V -> ( R ^r 0 ) = ( _I |` ( dom R u. ran R ) ) ) |
| 32 |
30 31
|
syl |
|- ( ( ( K e. NN0 /\ J = 0 ) /\ ( R e. V /\ I = ( J x. K ) /\ ( I = 0 -> J <_ K ) ) ) -> ( R ^r 0 ) = ( _I |` ( dom R u. ran R ) ) ) |
| 33 |
29 32
|
eqtrd |
|- ( ( ( K e. NN0 /\ J = 0 ) /\ ( R e. V /\ I = ( J x. K ) /\ ( I = 0 -> J <_ K ) ) ) -> ( R ^r J ) = ( _I |` ( dom R u. ran R ) ) ) |
| 34 |
33
|
oveq1d |
|- ( ( ( K e. NN0 /\ J = 0 ) /\ ( R e. V /\ I = ( J x. K ) /\ ( I = 0 -> J <_ K ) ) ) -> ( ( R ^r J ) ^r K ) = ( ( _I |` ( dom R u. ran R ) ) ^r K ) ) |
| 35 |
|
dmexg |
|- ( R e. V -> dom R e. _V ) |
| 36 |
|
rnexg |
|- ( R e. V -> ran R e. _V ) |
| 37 |
35 36
|
unexd |
|- ( R e. V -> ( dom R u. ran R ) e. _V ) |
| 38 |
30 37
|
syl |
|- ( ( ( K e. NN0 /\ J = 0 ) /\ ( R e. V /\ I = ( J x. K ) /\ ( I = 0 -> J <_ K ) ) ) -> ( dom R u. ran R ) e. _V ) |
| 39 |
|
simpll |
|- ( ( ( K e. NN0 /\ J = 0 ) /\ ( R e. V /\ I = ( J x. K ) /\ ( I = 0 -> J <_ K ) ) ) -> K e. NN0 ) |
| 40 |
|
relexpiidm |
|- ( ( ( dom R u. ran R ) e. _V /\ K e. NN0 ) -> ( ( _I |` ( dom R u. ran R ) ) ^r K ) = ( _I |` ( dom R u. ran R ) ) ) |
| 41 |
38 39 40
|
syl2anc |
|- ( ( ( K e. NN0 /\ J = 0 ) /\ ( R e. V /\ I = ( J x. K ) /\ ( I = 0 -> J <_ K ) ) ) -> ( ( _I |` ( dom R u. ran R ) ) ^r K ) = ( _I |` ( dom R u. ran R ) ) ) |
| 42 |
|
simpr2 |
|- ( ( ( K e. NN0 /\ J = 0 ) /\ ( R e. V /\ I = ( J x. K ) /\ ( I = 0 -> J <_ K ) ) ) -> I = ( J x. K ) ) |
| 43 |
28
|
oveq1d |
|- ( ( ( K e. NN0 /\ J = 0 ) /\ ( R e. V /\ I = ( J x. K ) /\ ( I = 0 -> J <_ K ) ) ) -> ( J x. K ) = ( 0 x. K ) ) |
| 44 |
39
|
nn0cnd |
|- ( ( ( K e. NN0 /\ J = 0 ) /\ ( R e. V /\ I = ( J x. K ) /\ ( I = 0 -> J <_ K ) ) ) -> K e. CC ) |
| 45 |
44
|
mul02d |
|- ( ( ( K e. NN0 /\ J = 0 ) /\ ( R e. V /\ I = ( J x. K ) /\ ( I = 0 -> J <_ K ) ) ) -> ( 0 x. K ) = 0 ) |
| 46 |
42 43 45
|
3eqtrd |
|- ( ( ( K e. NN0 /\ J = 0 ) /\ ( R e. V /\ I = ( J x. K ) /\ ( I = 0 -> J <_ K ) ) ) -> I = 0 ) |
| 47 |
46
|
oveq2d |
|- ( ( ( K e. NN0 /\ J = 0 ) /\ ( R e. V /\ I = ( J x. K ) /\ ( I = 0 -> J <_ K ) ) ) -> ( R ^r I ) = ( R ^r 0 ) ) |
| 48 |
47 32
|
eqtr2d |
|- ( ( ( K e. NN0 /\ J = 0 ) /\ ( R e. V /\ I = ( J x. K ) /\ ( I = 0 -> J <_ K ) ) ) -> ( _I |` ( dom R u. ran R ) ) = ( R ^r I ) ) |
| 49 |
34 41 48
|
3eqtrd |
|- ( ( ( K e. NN0 /\ J = 0 ) /\ ( R e. V /\ I = ( J x. K ) /\ ( I = 0 -> J <_ K ) ) ) -> ( ( R ^r J ) ^r K ) = ( R ^r I ) ) |
| 50 |
49
|
ex |
|- ( ( K e. NN0 /\ J = 0 ) -> ( ( R e. V /\ I = ( J x. K ) /\ ( I = 0 -> J <_ K ) ) -> ( ( R ^r J ) ^r K ) = ( R ^r I ) ) ) |
| 51 |
50
|
ex |
|- ( K e. NN0 -> ( J = 0 -> ( ( R e. V /\ I = ( J x. K ) /\ ( I = 0 -> J <_ K ) ) -> ( ( R ^r J ) ^r K ) = ( R ^r I ) ) ) ) |
| 52 |
27 51
|
jaod |
|- ( K e. NN0 -> ( ( J e. NN \/ J = 0 ) -> ( ( R e. V /\ I = ( J x. K ) /\ ( I = 0 -> J <_ K ) ) -> ( ( R ^r J ) ^r K ) = ( R ^r I ) ) ) ) |
| 53 |
1 52
|
biimtrid |
|- ( K e. NN0 -> ( J e. NN0 -> ( ( R e. V /\ I = ( J x. K ) /\ ( I = 0 -> J <_ K ) ) -> ( ( R ^r J ) ^r K ) = ( R ^r I ) ) ) ) |
| 54 |
53
|
impcom |
|- ( ( J e. NN0 /\ K e. NN0 ) -> ( ( R e. V /\ I = ( J x. K ) /\ ( I = 0 -> J <_ K ) ) -> ( ( R ^r J ) ^r K ) = ( R ^r I ) ) ) |
| 55 |
54
|
impcom |
|- ( ( ( R e. V /\ I = ( J x. K ) /\ ( I = 0 -> J <_ K ) ) /\ ( J e. NN0 /\ K e. NN0 ) ) -> ( ( R ^r J ) ^r K ) = ( R ^r I ) ) |