| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iunrelexpmin1.def |
⊢ 𝐶 = ( 𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 ( 𝑟 ↑𝑟 𝑛 ) ) |
| 2 |
|
simplr |
⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑁 = ℕ ) ∧ 𝑟 = 𝑅 ) → 𝑁 = ℕ ) |
| 3 |
|
simpr |
⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑁 = ℕ ) ∧ 𝑟 = 𝑅 ) → 𝑟 = 𝑅 ) |
| 4 |
3
|
oveq1d |
⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑁 = ℕ ) ∧ 𝑟 = 𝑅 ) → ( 𝑟 ↑𝑟 𝑛 ) = ( 𝑅 ↑𝑟 𝑛 ) ) |
| 5 |
2 4
|
iuneq12d |
⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑁 = ℕ ) ∧ 𝑟 = 𝑅 ) → ∪ 𝑛 ∈ 𝑁 ( 𝑟 ↑𝑟 𝑛 ) = ∪ 𝑛 ∈ ℕ ( 𝑅 ↑𝑟 𝑛 ) ) |
| 6 |
|
elex |
⊢ ( 𝑅 ∈ 𝑉 → 𝑅 ∈ V ) |
| 7 |
6
|
adantr |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑁 = ℕ ) → 𝑅 ∈ V ) |
| 8 |
|
nnex |
⊢ ℕ ∈ V |
| 9 |
|
ovex |
⊢ ( 𝑅 ↑𝑟 𝑛 ) ∈ V |
| 10 |
8 9
|
iunex |
⊢ ∪ 𝑛 ∈ ℕ ( 𝑅 ↑𝑟 𝑛 ) ∈ V |
| 11 |
10
|
a1i |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑁 = ℕ ) → ∪ 𝑛 ∈ ℕ ( 𝑅 ↑𝑟 𝑛 ) ∈ V ) |
| 12 |
1 5 7 11
|
fvmptd2 |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑁 = ℕ ) → ( 𝐶 ‘ 𝑅 ) = ∪ 𝑛 ∈ ℕ ( 𝑅 ↑𝑟 𝑛 ) ) |
| 13 |
|
relexp1g |
⊢ ( 𝑅 ∈ 𝑉 → ( 𝑅 ↑𝑟 1 ) = 𝑅 ) |
| 14 |
13
|
sseq1d |
⊢ ( 𝑅 ∈ 𝑉 → ( ( 𝑅 ↑𝑟 1 ) ⊆ 𝑠 ↔ 𝑅 ⊆ 𝑠 ) ) |
| 15 |
14
|
anbi1d |
⊢ ( 𝑅 ∈ 𝑉 → ( ( ( 𝑅 ↑𝑟 1 ) ⊆ 𝑠 ∧ ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ) ↔ ( 𝑅 ⊆ 𝑠 ∧ ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ) ) ) |
| 16 |
|
oveq2 |
⊢ ( 𝑥 = 1 → ( 𝑅 ↑𝑟 𝑥 ) = ( 𝑅 ↑𝑟 1 ) ) |
| 17 |
16
|
sseq1d |
⊢ ( 𝑥 = 1 → ( ( 𝑅 ↑𝑟 𝑥 ) ⊆ 𝑠 ↔ ( 𝑅 ↑𝑟 1 ) ⊆ 𝑠 ) ) |
| 18 |
17
|
imbi2d |
⊢ ( 𝑥 = 1 → ( ( ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑅 ↑𝑟 1 ) ⊆ 𝑠 ∧ ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ) ) → ( 𝑅 ↑𝑟 𝑥 ) ⊆ 𝑠 ) ↔ ( ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑅 ↑𝑟 1 ) ⊆ 𝑠 ∧ ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ) ) → ( 𝑅 ↑𝑟 1 ) ⊆ 𝑠 ) ) ) |
| 19 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝑅 ↑𝑟 𝑥 ) = ( 𝑅 ↑𝑟 𝑦 ) ) |
| 20 |
19
|
sseq1d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑅 ↑𝑟 𝑥 ) ⊆ 𝑠 ↔ ( 𝑅 ↑𝑟 𝑦 ) ⊆ 𝑠 ) ) |
| 21 |
20
|
imbi2d |
⊢ ( 𝑥 = 𝑦 → ( ( ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑅 ↑𝑟 1 ) ⊆ 𝑠 ∧ ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ) ) → ( 𝑅 ↑𝑟 𝑥 ) ⊆ 𝑠 ) ↔ ( ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑅 ↑𝑟 1 ) ⊆ 𝑠 ∧ ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ) ) → ( 𝑅 ↑𝑟 𝑦 ) ⊆ 𝑠 ) ) ) |
| 22 |
|
oveq2 |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝑅 ↑𝑟 𝑥 ) = ( 𝑅 ↑𝑟 ( 𝑦 + 1 ) ) ) |
| 23 |
22
|
sseq1d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( 𝑅 ↑𝑟 𝑥 ) ⊆ 𝑠 ↔ ( 𝑅 ↑𝑟 ( 𝑦 + 1 ) ) ⊆ 𝑠 ) ) |
| 24 |
23
|
imbi2d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑅 ↑𝑟 1 ) ⊆ 𝑠 ∧ ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ) ) → ( 𝑅 ↑𝑟 𝑥 ) ⊆ 𝑠 ) ↔ ( ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑅 ↑𝑟 1 ) ⊆ 𝑠 ∧ ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ) ) → ( 𝑅 ↑𝑟 ( 𝑦 + 1 ) ) ⊆ 𝑠 ) ) ) |
| 25 |
|
oveq2 |
⊢ ( 𝑥 = 𝑛 → ( 𝑅 ↑𝑟 𝑥 ) = ( 𝑅 ↑𝑟 𝑛 ) ) |
| 26 |
25
|
sseq1d |
⊢ ( 𝑥 = 𝑛 → ( ( 𝑅 ↑𝑟 𝑥 ) ⊆ 𝑠 ↔ ( 𝑅 ↑𝑟 𝑛 ) ⊆ 𝑠 ) ) |
| 27 |
26
|
imbi2d |
⊢ ( 𝑥 = 𝑛 → ( ( ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑅 ↑𝑟 1 ) ⊆ 𝑠 ∧ ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ) ) → ( 𝑅 ↑𝑟 𝑥 ) ⊆ 𝑠 ) ↔ ( ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑅 ↑𝑟 1 ) ⊆ 𝑠 ∧ ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ) ) → ( 𝑅 ↑𝑟 𝑛 ) ⊆ 𝑠 ) ) ) |
| 28 |
|
simprl |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑅 ↑𝑟 1 ) ⊆ 𝑠 ∧ ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ) ) → ( 𝑅 ↑𝑟 1 ) ⊆ 𝑠 ) |
| 29 |
|
simp1 |
⊢ ( ( 𝑦 ∈ ℕ ∧ ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑅 ↑𝑟 1 ) ⊆ 𝑠 ∧ ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ) ) ∧ ( 𝑅 ↑𝑟 𝑦 ) ⊆ 𝑠 ) → 𝑦 ∈ ℕ ) |
| 30 |
|
1nn |
⊢ 1 ∈ ℕ |
| 31 |
30
|
a1i |
⊢ ( ( 𝑦 ∈ ℕ ∧ ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑅 ↑𝑟 1 ) ⊆ 𝑠 ∧ ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ) ) ∧ ( 𝑅 ↑𝑟 𝑦 ) ⊆ 𝑠 ) → 1 ∈ ℕ ) |
| 32 |
|
simp2l |
⊢ ( ( 𝑦 ∈ ℕ ∧ ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑅 ↑𝑟 1 ) ⊆ 𝑠 ∧ ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ) ) ∧ ( 𝑅 ↑𝑟 𝑦 ) ⊆ 𝑠 ) → 𝑅 ∈ 𝑉 ) |
| 33 |
|
relexpaddnn |
⊢ ( ( 𝑦 ∈ ℕ ∧ 1 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ) → ( ( 𝑅 ↑𝑟 𝑦 ) ∘ ( 𝑅 ↑𝑟 1 ) ) = ( 𝑅 ↑𝑟 ( 𝑦 + 1 ) ) ) |
| 34 |
29 31 32 33
|
syl3anc |
⊢ ( ( 𝑦 ∈ ℕ ∧ ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑅 ↑𝑟 1 ) ⊆ 𝑠 ∧ ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ) ) ∧ ( 𝑅 ↑𝑟 𝑦 ) ⊆ 𝑠 ) → ( ( 𝑅 ↑𝑟 𝑦 ) ∘ ( 𝑅 ↑𝑟 1 ) ) = ( 𝑅 ↑𝑟 ( 𝑦 + 1 ) ) ) |
| 35 |
|
simp2rr |
⊢ ( ( 𝑦 ∈ ℕ ∧ ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑅 ↑𝑟 1 ) ⊆ 𝑠 ∧ ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ) ) ∧ ( 𝑅 ↑𝑟 𝑦 ) ⊆ 𝑠 ) → ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ) |
| 36 |
|
simp3 |
⊢ ( ( 𝑦 ∈ ℕ ∧ ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑅 ↑𝑟 1 ) ⊆ 𝑠 ∧ ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ) ) ∧ ( 𝑅 ↑𝑟 𝑦 ) ⊆ 𝑠 ) → ( 𝑅 ↑𝑟 𝑦 ) ⊆ 𝑠 ) |
| 37 |
|
simp2rl |
⊢ ( ( 𝑦 ∈ ℕ ∧ ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑅 ↑𝑟 1 ) ⊆ 𝑠 ∧ ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ) ) ∧ ( 𝑅 ↑𝑟 𝑦 ) ⊆ 𝑠 ) → ( 𝑅 ↑𝑟 1 ) ⊆ 𝑠 ) |
| 38 |
35 36 37
|
trrelssd |
⊢ ( ( 𝑦 ∈ ℕ ∧ ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑅 ↑𝑟 1 ) ⊆ 𝑠 ∧ ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ) ) ∧ ( 𝑅 ↑𝑟 𝑦 ) ⊆ 𝑠 ) → ( ( 𝑅 ↑𝑟 𝑦 ) ∘ ( 𝑅 ↑𝑟 1 ) ) ⊆ 𝑠 ) |
| 39 |
34 38
|
eqsstrrd |
⊢ ( ( 𝑦 ∈ ℕ ∧ ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑅 ↑𝑟 1 ) ⊆ 𝑠 ∧ ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ) ) ∧ ( 𝑅 ↑𝑟 𝑦 ) ⊆ 𝑠 ) → ( 𝑅 ↑𝑟 ( 𝑦 + 1 ) ) ⊆ 𝑠 ) |
| 40 |
39
|
3exp |
⊢ ( 𝑦 ∈ ℕ → ( ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑅 ↑𝑟 1 ) ⊆ 𝑠 ∧ ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ) ) → ( ( 𝑅 ↑𝑟 𝑦 ) ⊆ 𝑠 → ( 𝑅 ↑𝑟 ( 𝑦 + 1 ) ) ⊆ 𝑠 ) ) ) |
| 41 |
40
|
a2d |
⊢ ( 𝑦 ∈ ℕ → ( ( ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑅 ↑𝑟 1 ) ⊆ 𝑠 ∧ ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ) ) → ( 𝑅 ↑𝑟 𝑦 ) ⊆ 𝑠 ) → ( ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑅 ↑𝑟 1 ) ⊆ 𝑠 ∧ ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ) ) → ( 𝑅 ↑𝑟 ( 𝑦 + 1 ) ) ⊆ 𝑠 ) ) ) |
| 42 |
18 21 24 27 28 41
|
nnind |
⊢ ( 𝑛 ∈ ℕ → ( ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑅 ↑𝑟 1 ) ⊆ 𝑠 ∧ ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ) ) → ( 𝑅 ↑𝑟 𝑛 ) ⊆ 𝑠 ) ) |
| 43 |
42
|
com12 |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑅 ↑𝑟 1 ) ⊆ 𝑠 ∧ ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ) ) → ( 𝑛 ∈ ℕ → ( 𝑅 ↑𝑟 𝑛 ) ⊆ 𝑠 ) ) |
| 44 |
43
|
ralrimiv |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑅 ↑𝑟 1 ) ⊆ 𝑠 ∧ ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ) ) → ∀ 𝑛 ∈ ℕ ( 𝑅 ↑𝑟 𝑛 ) ⊆ 𝑠 ) |
| 45 |
|
iunss |
⊢ ( ∪ 𝑛 ∈ ℕ ( 𝑅 ↑𝑟 𝑛 ) ⊆ 𝑠 ↔ ∀ 𝑛 ∈ ℕ ( 𝑅 ↑𝑟 𝑛 ) ⊆ 𝑠 ) |
| 46 |
44 45
|
sylibr |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑅 ↑𝑟 1 ) ⊆ 𝑠 ∧ ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ) ) → ∪ 𝑛 ∈ ℕ ( 𝑅 ↑𝑟 𝑛 ) ⊆ 𝑠 ) |
| 47 |
46
|
ex |
⊢ ( 𝑅 ∈ 𝑉 → ( ( ( 𝑅 ↑𝑟 1 ) ⊆ 𝑠 ∧ ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ) → ∪ 𝑛 ∈ ℕ ( 𝑅 ↑𝑟 𝑛 ) ⊆ 𝑠 ) ) |
| 48 |
15 47
|
sylbird |
⊢ ( 𝑅 ∈ 𝑉 → ( ( 𝑅 ⊆ 𝑠 ∧ ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ) → ∪ 𝑛 ∈ ℕ ( 𝑅 ↑𝑟 𝑛 ) ⊆ 𝑠 ) ) |
| 49 |
48
|
adantr |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑁 = ℕ ) → ( ( 𝑅 ⊆ 𝑠 ∧ ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ) → ∪ 𝑛 ∈ ℕ ( 𝑅 ↑𝑟 𝑛 ) ⊆ 𝑠 ) ) |
| 50 |
|
sseq1 |
⊢ ( ( 𝐶 ‘ 𝑅 ) = ∪ 𝑛 ∈ ℕ ( 𝑅 ↑𝑟 𝑛 ) → ( ( 𝐶 ‘ 𝑅 ) ⊆ 𝑠 ↔ ∪ 𝑛 ∈ ℕ ( 𝑅 ↑𝑟 𝑛 ) ⊆ 𝑠 ) ) |
| 51 |
50
|
imbi2d |
⊢ ( ( 𝐶 ‘ 𝑅 ) = ∪ 𝑛 ∈ ℕ ( 𝑅 ↑𝑟 𝑛 ) → ( ( ( 𝑅 ⊆ 𝑠 ∧ ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ) → ( 𝐶 ‘ 𝑅 ) ⊆ 𝑠 ) ↔ ( ( 𝑅 ⊆ 𝑠 ∧ ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ) → ∪ 𝑛 ∈ ℕ ( 𝑅 ↑𝑟 𝑛 ) ⊆ 𝑠 ) ) ) |
| 52 |
49 51
|
imbitrrid |
⊢ ( ( 𝐶 ‘ 𝑅 ) = ∪ 𝑛 ∈ ℕ ( 𝑅 ↑𝑟 𝑛 ) → ( ( 𝑅 ∈ 𝑉 ∧ 𝑁 = ℕ ) → ( ( 𝑅 ⊆ 𝑠 ∧ ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ) → ( 𝐶 ‘ 𝑅 ) ⊆ 𝑠 ) ) ) |
| 53 |
12 52
|
mpcom |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑁 = ℕ ) → ( ( 𝑅 ⊆ 𝑠 ∧ ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ) → ( 𝐶 ‘ 𝑅 ) ⊆ 𝑠 ) ) |
| 54 |
53
|
alrimiv |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑁 = ℕ ) → ∀ 𝑠 ( ( 𝑅 ⊆ 𝑠 ∧ ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ) → ( 𝐶 ‘ 𝑅 ) ⊆ 𝑠 ) ) |