Metamath Proof Explorer


Theorem dfrcl4

Description: Reflexive closure of a relation as indexed union of powers of the relation. (Contributed by RP, 8-Jun-2020)

Ref Expression
Assertion dfrcl4 r* = r V n 0 1 r r n

Proof

Step Hyp Ref Expression
1 dfrcl3 r* = r V r r 0 r r 1
2 df-pr 0 1 = 0 1
3 iuneq1 0 1 = 0 1 n 0 1 r r n = n 0 1 r r n
4 2 3 ax-mp n 0 1 r r n = n 0 1 r r n
5 iunxun n 0 1 r r n = n 0 r r n n 1 r r n
6 c0ex 0 V
7 oveq2 n = 0 r r n = r r 0
8 6 7 iunxsn n 0 r r n = r r 0
9 1ex 1 V
10 oveq2 n = 1 r r n = r r 1
11 9 10 iunxsn n 1 r r n = r r 1
12 8 11 uneq12i n 0 r r n n 1 r r n = r r 0 r r 1
13 4 5 12 3eqtri n 0 1 r r n = r r 0 r r 1
14 13 mpteq2i r V n 0 1 r r n = r V r r 0 r r 1
15 1 14 eqtr4i r* = r V n 0 1 r r n