Metamath Proof Explorer


Theorem dfrcl4

Description: Reflexive closure of a relation as indexed union of powers of the relation. (Contributed by RP, 8-Jun-2020)

Ref Expression
Assertion dfrcl4 r* = ( 𝑟 ∈ V ↦ 𝑛 ∈ { 0 , 1 } ( 𝑟𝑟 𝑛 ) )

Proof

Step Hyp Ref Expression
1 dfrcl3 r* = ( 𝑟 ∈ V ↦ ( ( 𝑟𝑟 0 ) ∪ ( 𝑟𝑟 1 ) ) )
2 df-pr { 0 , 1 } = ( { 0 } ∪ { 1 } )
3 iuneq1 ( { 0 , 1 } = ( { 0 } ∪ { 1 } ) → 𝑛 ∈ { 0 , 1 } ( 𝑟𝑟 𝑛 ) = 𝑛 ∈ ( { 0 } ∪ { 1 } ) ( 𝑟𝑟 𝑛 ) )
4 2 3 ax-mp 𝑛 ∈ { 0 , 1 } ( 𝑟𝑟 𝑛 ) = 𝑛 ∈ ( { 0 } ∪ { 1 } ) ( 𝑟𝑟 𝑛 )
5 iunxun 𝑛 ∈ ( { 0 } ∪ { 1 } ) ( 𝑟𝑟 𝑛 ) = ( 𝑛 ∈ { 0 } ( 𝑟𝑟 𝑛 ) ∪ 𝑛 ∈ { 1 } ( 𝑟𝑟 𝑛 ) )
6 c0ex 0 ∈ V
7 oveq2 ( 𝑛 = 0 → ( 𝑟𝑟 𝑛 ) = ( 𝑟𝑟 0 ) )
8 6 7 iunxsn 𝑛 ∈ { 0 } ( 𝑟𝑟 𝑛 ) = ( 𝑟𝑟 0 )
9 1ex 1 ∈ V
10 oveq2 ( 𝑛 = 1 → ( 𝑟𝑟 𝑛 ) = ( 𝑟𝑟 1 ) )
11 9 10 iunxsn 𝑛 ∈ { 1 } ( 𝑟𝑟 𝑛 ) = ( 𝑟𝑟 1 )
12 8 11 uneq12i ( 𝑛 ∈ { 0 } ( 𝑟𝑟 𝑛 ) ∪ 𝑛 ∈ { 1 } ( 𝑟𝑟 𝑛 ) ) = ( ( 𝑟𝑟 0 ) ∪ ( 𝑟𝑟 1 ) )
13 4 5 12 3eqtri 𝑛 ∈ { 0 , 1 } ( 𝑟𝑟 𝑛 ) = ( ( 𝑟𝑟 0 ) ∪ ( 𝑟𝑟 1 ) )
14 13 mpteq2i ( 𝑟 ∈ V ↦ 𝑛 ∈ { 0 , 1 } ( 𝑟𝑟 𝑛 ) ) = ( 𝑟 ∈ V ↦ ( ( 𝑟𝑟 0 ) ∪ ( 𝑟𝑟 1 ) ) )
15 1 14 eqtr4i r* = ( 𝑟 ∈ V ↦ 𝑛 ∈ { 0 , 1 } ( 𝑟𝑟 𝑛 ) )