| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dfrcl3 |
⊢ r* = ( 𝑟 ∈ V ↦ ( ( 𝑟 ↑𝑟 0 ) ∪ ( 𝑟 ↑𝑟 1 ) ) ) |
| 2 |
|
df-pr |
⊢ { 0 , 1 } = ( { 0 } ∪ { 1 } ) |
| 3 |
|
iuneq1 |
⊢ ( { 0 , 1 } = ( { 0 } ∪ { 1 } ) → ∪ 𝑛 ∈ { 0 , 1 } ( 𝑟 ↑𝑟 𝑛 ) = ∪ 𝑛 ∈ ( { 0 } ∪ { 1 } ) ( 𝑟 ↑𝑟 𝑛 ) ) |
| 4 |
2 3
|
ax-mp |
⊢ ∪ 𝑛 ∈ { 0 , 1 } ( 𝑟 ↑𝑟 𝑛 ) = ∪ 𝑛 ∈ ( { 0 } ∪ { 1 } ) ( 𝑟 ↑𝑟 𝑛 ) |
| 5 |
|
iunxun |
⊢ ∪ 𝑛 ∈ ( { 0 } ∪ { 1 } ) ( 𝑟 ↑𝑟 𝑛 ) = ( ∪ 𝑛 ∈ { 0 } ( 𝑟 ↑𝑟 𝑛 ) ∪ ∪ 𝑛 ∈ { 1 } ( 𝑟 ↑𝑟 𝑛 ) ) |
| 6 |
|
c0ex |
⊢ 0 ∈ V |
| 7 |
|
oveq2 |
⊢ ( 𝑛 = 0 → ( 𝑟 ↑𝑟 𝑛 ) = ( 𝑟 ↑𝑟 0 ) ) |
| 8 |
6 7
|
iunxsn |
⊢ ∪ 𝑛 ∈ { 0 } ( 𝑟 ↑𝑟 𝑛 ) = ( 𝑟 ↑𝑟 0 ) |
| 9 |
|
1ex |
⊢ 1 ∈ V |
| 10 |
|
oveq2 |
⊢ ( 𝑛 = 1 → ( 𝑟 ↑𝑟 𝑛 ) = ( 𝑟 ↑𝑟 1 ) ) |
| 11 |
9 10
|
iunxsn |
⊢ ∪ 𝑛 ∈ { 1 } ( 𝑟 ↑𝑟 𝑛 ) = ( 𝑟 ↑𝑟 1 ) |
| 12 |
8 11
|
uneq12i |
⊢ ( ∪ 𝑛 ∈ { 0 } ( 𝑟 ↑𝑟 𝑛 ) ∪ ∪ 𝑛 ∈ { 1 } ( 𝑟 ↑𝑟 𝑛 ) ) = ( ( 𝑟 ↑𝑟 0 ) ∪ ( 𝑟 ↑𝑟 1 ) ) |
| 13 |
4 5 12
|
3eqtri |
⊢ ∪ 𝑛 ∈ { 0 , 1 } ( 𝑟 ↑𝑟 𝑛 ) = ( ( 𝑟 ↑𝑟 0 ) ∪ ( 𝑟 ↑𝑟 1 ) ) |
| 14 |
13
|
mpteq2i |
⊢ ( 𝑟 ∈ V ↦ ∪ 𝑛 ∈ { 0 , 1 } ( 𝑟 ↑𝑟 𝑛 ) ) = ( 𝑟 ∈ V ↦ ( ( 𝑟 ↑𝑟 0 ) ∪ ( 𝑟 ↑𝑟 1 ) ) ) |
| 15 |
1 14
|
eqtr4i |
⊢ r* = ( 𝑟 ∈ V ↦ ∪ 𝑛 ∈ { 0 , 1 } ( 𝑟 ↑𝑟 𝑛 ) ) |