Description: Reflexive closure of a relation as union of powers of the relation. (Contributed by RP, 6-Jun-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfrcl3 | ⊢ r* = ( 𝑥 ∈ V ↦ ( ( 𝑥 ↑𝑟 0 ) ∪ ( 𝑥 ↑𝑟 1 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfrcl2 | ⊢ r* = ( 𝑥 ∈ V ↦ ( ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ∪ 𝑥 ) ) | |
| 2 | relexp0g | ⊢ ( 𝑥 ∈ V → ( 𝑥 ↑𝑟 0 ) = ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ) | |
| 3 | relexp1g | ⊢ ( 𝑥 ∈ V → ( 𝑥 ↑𝑟 1 ) = 𝑥 ) | |
| 4 | 2 3 | uneq12d | ⊢ ( 𝑥 ∈ V → ( ( 𝑥 ↑𝑟 0 ) ∪ ( 𝑥 ↑𝑟 1 ) ) = ( ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ∪ 𝑥 ) ) |
| 5 | 4 | mpteq2ia | ⊢ ( 𝑥 ∈ V ↦ ( ( 𝑥 ↑𝑟 0 ) ∪ ( 𝑥 ↑𝑟 1 ) ) ) = ( 𝑥 ∈ V ↦ ( ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ∪ 𝑥 ) ) |
| 6 | 1 5 | eqtr4i | ⊢ r* = ( 𝑥 ∈ V ↦ ( ( 𝑥 ↑𝑟 0 ) ∪ ( 𝑥 ↑𝑟 1 ) ) ) |