| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-rcl |
⊢ r* = ( 𝑥 ∈ V ↦ ∩ { 𝑧 ∣ ( 𝑥 ⊆ 𝑧 ∧ ( I ↾ ( dom 𝑧 ∪ ran 𝑧 ) ) ⊆ 𝑧 ) } ) |
| 2 |
|
rabab |
⊢ { 𝑧 ∈ V ∣ ( 𝑥 ⊆ 𝑧 ∧ ( I ↾ ( dom 𝑧 ∪ ran 𝑧 ) ) ⊆ 𝑧 ) } = { 𝑧 ∣ ( 𝑥 ⊆ 𝑧 ∧ ( I ↾ ( dom 𝑧 ∪ ran 𝑧 ) ) ⊆ 𝑧 ) } |
| 3 |
2
|
eqcomi |
⊢ { 𝑧 ∣ ( 𝑥 ⊆ 𝑧 ∧ ( I ↾ ( dom 𝑧 ∪ ran 𝑧 ) ) ⊆ 𝑧 ) } = { 𝑧 ∈ V ∣ ( 𝑥 ⊆ 𝑧 ∧ ( I ↾ ( dom 𝑧 ∪ ran 𝑧 ) ) ⊆ 𝑧 ) } |
| 4 |
3
|
inteqi |
⊢ ∩ { 𝑧 ∣ ( 𝑥 ⊆ 𝑧 ∧ ( I ↾ ( dom 𝑧 ∪ ran 𝑧 ) ) ⊆ 𝑧 ) } = ∩ { 𝑧 ∈ V ∣ ( 𝑥 ⊆ 𝑧 ∧ ( I ↾ ( dom 𝑧 ∪ ran 𝑧 ) ) ⊆ 𝑧 ) } |
| 5 |
4
|
a1i |
⊢ ( 𝑥 ∈ V → ∩ { 𝑧 ∣ ( 𝑥 ⊆ 𝑧 ∧ ( I ↾ ( dom 𝑧 ∪ ran 𝑧 ) ) ⊆ 𝑧 ) } = ∩ { 𝑧 ∈ V ∣ ( 𝑥 ⊆ 𝑧 ∧ ( I ↾ ( dom 𝑧 ∪ ran 𝑧 ) ) ⊆ 𝑧 ) } ) |
| 6 |
|
vex |
⊢ 𝑥 ∈ V |
| 7 |
6
|
dmex |
⊢ dom 𝑥 ∈ V |
| 8 |
6
|
rnex |
⊢ ran 𝑥 ∈ V |
| 9 |
7 8
|
unex |
⊢ ( dom 𝑥 ∪ ran 𝑥 ) ∈ V |
| 10 |
|
resiexg |
⊢ ( ( dom 𝑥 ∪ ran 𝑥 ) ∈ V → ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ∈ V ) |
| 11 |
9 10
|
ax-mp |
⊢ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ∈ V |
| 12 |
11 6
|
unex |
⊢ ( ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ∪ 𝑥 ) ∈ V |
| 13 |
12
|
a1i |
⊢ ( 𝑥 ∈ V → ( ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ∪ 𝑥 ) ∈ V ) |
| 14 |
|
ssun2 |
⊢ 𝑥 ⊆ ( ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ∪ 𝑥 ) |
| 15 |
|
dmun |
⊢ dom ( ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ∪ 𝑥 ) = ( dom ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ∪ dom 𝑥 ) |
| 16 |
|
dmresi |
⊢ dom ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) = ( dom 𝑥 ∪ ran 𝑥 ) |
| 17 |
16
|
uneq1i |
⊢ ( dom ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ∪ dom 𝑥 ) = ( ( dom 𝑥 ∪ ran 𝑥 ) ∪ dom 𝑥 ) |
| 18 |
|
un23 |
⊢ ( ( dom 𝑥 ∪ ran 𝑥 ) ∪ dom 𝑥 ) = ( ( dom 𝑥 ∪ dom 𝑥 ) ∪ ran 𝑥 ) |
| 19 |
|
unidm |
⊢ ( dom 𝑥 ∪ dom 𝑥 ) = dom 𝑥 |
| 20 |
19
|
uneq1i |
⊢ ( ( dom 𝑥 ∪ dom 𝑥 ) ∪ ran 𝑥 ) = ( dom 𝑥 ∪ ran 𝑥 ) |
| 21 |
18 20
|
eqtri |
⊢ ( ( dom 𝑥 ∪ ran 𝑥 ) ∪ dom 𝑥 ) = ( dom 𝑥 ∪ ran 𝑥 ) |
| 22 |
15 17 21
|
3eqtri |
⊢ dom ( ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ∪ 𝑥 ) = ( dom 𝑥 ∪ ran 𝑥 ) |
| 23 |
|
rnun |
⊢ ran ( ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ∪ 𝑥 ) = ( ran ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ∪ ran 𝑥 ) |
| 24 |
|
rnresi |
⊢ ran ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) = ( dom 𝑥 ∪ ran 𝑥 ) |
| 25 |
24
|
uneq1i |
⊢ ( ran ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ∪ ran 𝑥 ) = ( ( dom 𝑥 ∪ ran 𝑥 ) ∪ ran 𝑥 ) |
| 26 |
|
unass |
⊢ ( ( dom 𝑥 ∪ ran 𝑥 ) ∪ ran 𝑥 ) = ( dom 𝑥 ∪ ( ran 𝑥 ∪ ran 𝑥 ) ) |
| 27 |
|
unidm |
⊢ ( ran 𝑥 ∪ ran 𝑥 ) = ran 𝑥 |
| 28 |
27
|
uneq2i |
⊢ ( dom 𝑥 ∪ ( ran 𝑥 ∪ ran 𝑥 ) ) = ( dom 𝑥 ∪ ran 𝑥 ) |
| 29 |
26 28
|
eqtri |
⊢ ( ( dom 𝑥 ∪ ran 𝑥 ) ∪ ran 𝑥 ) = ( dom 𝑥 ∪ ran 𝑥 ) |
| 30 |
23 25 29
|
3eqtri |
⊢ ran ( ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ∪ 𝑥 ) = ( dom 𝑥 ∪ ran 𝑥 ) |
| 31 |
22 30
|
uneq12i |
⊢ ( dom ( ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ∪ 𝑥 ) ∪ ran ( ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ∪ 𝑥 ) ) = ( ( dom 𝑥 ∪ ran 𝑥 ) ∪ ( dom 𝑥 ∪ ran 𝑥 ) ) |
| 32 |
|
unidm |
⊢ ( ( dom 𝑥 ∪ ran 𝑥 ) ∪ ( dom 𝑥 ∪ ran 𝑥 ) ) = ( dom 𝑥 ∪ ran 𝑥 ) |
| 33 |
31 32
|
eqtri |
⊢ ( dom ( ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ∪ 𝑥 ) ∪ ran ( ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ∪ 𝑥 ) ) = ( dom 𝑥 ∪ ran 𝑥 ) |
| 34 |
33
|
reseq2i |
⊢ ( I ↾ ( dom ( ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ∪ 𝑥 ) ∪ ran ( ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ∪ 𝑥 ) ) ) = ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) |
| 35 |
|
ssun1 |
⊢ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ⊆ ( ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ∪ 𝑥 ) |
| 36 |
34 35
|
eqsstri |
⊢ ( I ↾ ( dom ( ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ∪ 𝑥 ) ∪ ran ( ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ∪ 𝑥 ) ) ) ⊆ ( ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ∪ 𝑥 ) |
| 37 |
14 36
|
pm3.2i |
⊢ ( 𝑥 ⊆ ( ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ∪ 𝑥 ) ∧ ( I ↾ ( dom ( ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ∪ 𝑥 ) ∪ ran ( ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ∪ 𝑥 ) ) ) ⊆ ( ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ∪ 𝑥 ) ) |
| 38 |
|
dmeq |
⊢ ( 𝑧 = ( ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ∪ 𝑥 ) → dom 𝑧 = dom ( ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ∪ 𝑥 ) ) |
| 39 |
|
rneq |
⊢ ( 𝑧 = ( ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ∪ 𝑥 ) → ran 𝑧 = ran ( ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ∪ 𝑥 ) ) |
| 40 |
38 39
|
uneq12d |
⊢ ( 𝑧 = ( ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ∪ 𝑥 ) → ( dom 𝑧 ∪ ran 𝑧 ) = ( dom ( ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ∪ 𝑥 ) ∪ ran ( ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ∪ 𝑥 ) ) ) |
| 41 |
40
|
reseq2d |
⊢ ( 𝑧 = ( ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ∪ 𝑥 ) → ( I ↾ ( dom 𝑧 ∪ ran 𝑧 ) ) = ( I ↾ ( dom ( ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ∪ 𝑥 ) ∪ ran ( ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ∪ 𝑥 ) ) ) ) |
| 42 |
|
id |
⊢ ( 𝑧 = ( ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ∪ 𝑥 ) → 𝑧 = ( ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ∪ 𝑥 ) ) |
| 43 |
41 42
|
sseq12d |
⊢ ( 𝑧 = ( ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ∪ 𝑥 ) → ( ( I ↾ ( dom 𝑧 ∪ ran 𝑧 ) ) ⊆ 𝑧 ↔ ( I ↾ ( dom ( ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ∪ 𝑥 ) ∪ ran ( ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ∪ 𝑥 ) ) ) ⊆ ( ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ∪ 𝑥 ) ) ) |
| 44 |
43
|
cleq2lem |
⊢ ( 𝑧 = ( ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ∪ 𝑥 ) → ( ( 𝑥 ⊆ 𝑧 ∧ ( I ↾ ( dom 𝑧 ∪ ran 𝑧 ) ) ⊆ 𝑧 ) ↔ ( 𝑥 ⊆ ( ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ∪ 𝑥 ) ∧ ( I ↾ ( dom ( ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ∪ 𝑥 ) ∪ ran ( ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ∪ 𝑥 ) ) ) ⊆ ( ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ∪ 𝑥 ) ) ) ) |
| 45 |
44
|
intminss |
⊢ ( ( ( ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ∪ 𝑥 ) ∈ V ∧ ( 𝑥 ⊆ ( ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ∪ 𝑥 ) ∧ ( I ↾ ( dom ( ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ∪ 𝑥 ) ∪ ran ( ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ∪ 𝑥 ) ) ) ⊆ ( ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ∪ 𝑥 ) ) ) → ∩ { 𝑧 ∈ V ∣ ( 𝑥 ⊆ 𝑧 ∧ ( I ↾ ( dom 𝑧 ∪ ran 𝑧 ) ) ⊆ 𝑧 ) } ⊆ ( ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ∪ 𝑥 ) ) |
| 46 |
13 37 45
|
sylancl |
⊢ ( 𝑥 ∈ V → ∩ { 𝑧 ∈ V ∣ ( 𝑥 ⊆ 𝑧 ∧ ( I ↾ ( dom 𝑧 ∪ ran 𝑧 ) ) ⊆ 𝑧 ) } ⊆ ( ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ∪ 𝑥 ) ) |
| 47 |
5 46
|
eqsstrd |
⊢ ( 𝑥 ∈ V → ∩ { 𝑧 ∣ ( 𝑥 ⊆ 𝑧 ∧ ( I ↾ ( dom 𝑧 ∪ ran 𝑧 ) ) ⊆ 𝑧 ) } ⊆ ( ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ∪ 𝑥 ) ) |
| 48 |
|
dmss |
⊢ ( 𝑥 ⊆ 𝑧 → dom 𝑥 ⊆ dom 𝑧 ) |
| 49 |
|
rnss |
⊢ ( 𝑥 ⊆ 𝑧 → ran 𝑥 ⊆ ran 𝑧 ) |
| 50 |
|
unss12 |
⊢ ( ( dom 𝑥 ⊆ dom 𝑧 ∧ ran 𝑥 ⊆ ran 𝑧 ) → ( dom 𝑥 ∪ ran 𝑥 ) ⊆ ( dom 𝑧 ∪ ran 𝑧 ) ) |
| 51 |
48 49 50
|
syl2anc |
⊢ ( 𝑥 ⊆ 𝑧 → ( dom 𝑥 ∪ ran 𝑥 ) ⊆ ( dom 𝑧 ∪ ran 𝑧 ) ) |
| 52 |
|
dfss |
⊢ ( ( dom 𝑥 ∪ ran 𝑥 ) ⊆ ( dom 𝑧 ∪ ran 𝑧 ) ↔ ( dom 𝑥 ∪ ran 𝑥 ) = ( ( dom 𝑥 ∪ ran 𝑥 ) ∩ ( dom 𝑧 ∪ ran 𝑧 ) ) ) |
| 53 |
51 52
|
sylib |
⊢ ( 𝑥 ⊆ 𝑧 → ( dom 𝑥 ∪ ran 𝑥 ) = ( ( dom 𝑥 ∪ ran 𝑥 ) ∩ ( dom 𝑧 ∪ ran 𝑧 ) ) ) |
| 54 |
|
incom |
⊢ ( ( dom 𝑥 ∪ ran 𝑥 ) ∩ ( dom 𝑧 ∪ ran 𝑧 ) ) = ( ( dom 𝑧 ∪ ran 𝑧 ) ∩ ( dom 𝑥 ∪ ran 𝑥 ) ) |
| 55 |
53 54
|
eqtrdi |
⊢ ( 𝑥 ⊆ 𝑧 → ( dom 𝑥 ∪ ran 𝑥 ) = ( ( dom 𝑧 ∪ ran 𝑧 ) ∩ ( dom 𝑥 ∪ ran 𝑥 ) ) ) |
| 56 |
55
|
reseq2d |
⊢ ( 𝑥 ⊆ 𝑧 → ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) = ( I ↾ ( ( dom 𝑧 ∪ ran 𝑧 ) ∩ ( dom 𝑥 ∪ ran 𝑥 ) ) ) ) |
| 57 |
|
resres |
⊢ ( ( I ↾ ( dom 𝑧 ∪ ran 𝑧 ) ) ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) = ( I ↾ ( ( dom 𝑧 ∪ ran 𝑧 ) ∩ ( dom 𝑥 ∪ ran 𝑥 ) ) ) |
| 58 |
56 57
|
eqtr4di |
⊢ ( 𝑥 ⊆ 𝑧 → ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) = ( ( I ↾ ( dom 𝑧 ∪ ran 𝑧 ) ) ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ) |
| 59 |
|
resss |
⊢ ( ( I ↾ ( dom 𝑧 ∪ ran 𝑧 ) ) ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ⊆ ( I ↾ ( dom 𝑧 ∪ ran 𝑧 ) ) |
| 60 |
59
|
a1i |
⊢ ( 𝑥 ⊆ 𝑧 → ( ( I ↾ ( dom 𝑧 ∪ ran 𝑧 ) ) ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ⊆ ( I ↾ ( dom 𝑧 ∪ ran 𝑧 ) ) ) |
| 61 |
58 60
|
eqsstrd |
⊢ ( 𝑥 ⊆ 𝑧 → ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ⊆ ( I ↾ ( dom 𝑧 ∪ ran 𝑧 ) ) ) |
| 62 |
61
|
adantr |
⊢ ( ( 𝑥 ⊆ 𝑧 ∧ ( I ↾ ( dom 𝑧 ∪ ran 𝑧 ) ) ⊆ 𝑧 ) → ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ⊆ ( I ↾ ( dom 𝑧 ∪ ran 𝑧 ) ) ) |
| 63 |
|
simpr |
⊢ ( ( 𝑥 ⊆ 𝑧 ∧ ( I ↾ ( dom 𝑧 ∪ ran 𝑧 ) ) ⊆ 𝑧 ) → ( I ↾ ( dom 𝑧 ∪ ran 𝑧 ) ) ⊆ 𝑧 ) |
| 64 |
62 63
|
sstrd |
⊢ ( ( 𝑥 ⊆ 𝑧 ∧ ( I ↾ ( dom 𝑧 ∪ ran 𝑧 ) ) ⊆ 𝑧 ) → ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ⊆ 𝑧 ) |
| 65 |
|
simpl |
⊢ ( ( 𝑥 ⊆ 𝑧 ∧ ( I ↾ ( dom 𝑧 ∪ ran 𝑧 ) ) ⊆ 𝑧 ) → 𝑥 ⊆ 𝑧 ) |
| 66 |
64 65
|
unssd |
⊢ ( ( 𝑥 ⊆ 𝑧 ∧ ( I ↾ ( dom 𝑧 ∪ ran 𝑧 ) ) ⊆ 𝑧 ) → ( ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ∪ 𝑥 ) ⊆ 𝑧 ) |
| 67 |
66
|
ax-gen |
⊢ ∀ 𝑧 ( ( 𝑥 ⊆ 𝑧 ∧ ( I ↾ ( dom 𝑧 ∪ ran 𝑧 ) ) ⊆ 𝑧 ) → ( ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ∪ 𝑥 ) ⊆ 𝑧 ) |
| 68 |
67
|
a1i |
⊢ ( 𝑥 ∈ V → ∀ 𝑧 ( ( 𝑥 ⊆ 𝑧 ∧ ( I ↾ ( dom 𝑧 ∪ ran 𝑧 ) ) ⊆ 𝑧 ) → ( ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ∪ 𝑥 ) ⊆ 𝑧 ) ) |
| 69 |
|
ssintab |
⊢ ( ( ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ∪ 𝑥 ) ⊆ ∩ { 𝑧 ∣ ( 𝑥 ⊆ 𝑧 ∧ ( I ↾ ( dom 𝑧 ∪ ran 𝑧 ) ) ⊆ 𝑧 ) } ↔ ∀ 𝑧 ( ( 𝑥 ⊆ 𝑧 ∧ ( I ↾ ( dom 𝑧 ∪ ran 𝑧 ) ) ⊆ 𝑧 ) → ( ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ∪ 𝑥 ) ⊆ 𝑧 ) ) |
| 70 |
68 69
|
sylibr |
⊢ ( 𝑥 ∈ V → ( ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ∪ 𝑥 ) ⊆ ∩ { 𝑧 ∣ ( 𝑥 ⊆ 𝑧 ∧ ( I ↾ ( dom 𝑧 ∪ ran 𝑧 ) ) ⊆ 𝑧 ) } ) |
| 71 |
47 70
|
eqssd |
⊢ ( 𝑥 ∈ V → ∩ { 𝑧 ∣ ( 𝑥 ⊆ 𝑧 ∧ ( I ↾ ( dom 𝑧 ∪ ran 𝑧 ) ) ⊆ 𝑧 ) } = ( ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ∪ 𝑥 ) ) |
| 72 |
71
|
mpteq2ia |
⊢ ( 𝑥 ∈ V ↦ ∩ { 𝑧 ∣ ( 𝑥 ⊆ 𝑧 ∧ ( I ↾ ( dom 𝑧 ∪ ran 𝑧 ) ) ⊆ 𝑧 ) } ) = ( 𝑥 ∈ V ↦ ( ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ∪ 𝑥 ) ) |
| 73 |
1 72
|
eqtri |
⊢ r* = ( 𝑥 ∈ V ↦ ( ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ∪ 𝑥 ) ) |