| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-rcl |
|- r* = ( x e. _V |-> |^| { z | ( x C_ z /\ ( _I |` ( dom z u. ran z ) ) C_ z ) } ) |
| 2 |
|
rabab |
|- { z e. _V | ( x C_ z /\ ( _I |` ( dom z u. ran z ) ) C_ z ) } = { z | ( x C_ z /\ ( _I |` ( dom z u. ran z ) ) C_ z ) } |
| 3 |
2
|
eqcomi |
|- { z | ( x C_ z /\ ( _I |` ( dom z u. ran z ) ) C_ z ) } = { z e. _V | ( x C_ z /\ ( _I |` ( dom z u. ran z ) ) C_ z ) } |
| 4 |
3
|
inteqi |
|- |^| { z | ( x C_ z /\ ( _I |` ( dom z u. ran z ) ) C_ z ) } = |^| { z e. _V | ( x C_ z /\ ( _I |` ( dom z u. ran z ) ) C_ z ) } |
| 5 |
4
|
a1i |
|- ( x e. _V -> |^| { z | ( x C_ z /\ ( _I |` ( dom z u. ran z ) ) C_ z ) } = |^| { z e. _V | ( x C_ z /\ ( _I |` ( dom z u. ran z ) ) C_ z ) } ) |
| 6 |
|
vex |
|- x e. _V |
| 7 |
6
|
dmex |
|- dom x e. _V |
| 8 |
6
|
rnex |
|- ran x e. _V |
| 9 |
7 8
|
unex |
|- ( dom x u. ran x ) e. _V |
| 10 |
|
resiexg |
|- ( ( dom x u. ran x ) e. _V -> ( _I |` ( dom x u. ran x ) ) e. _V ) |
| 11 |
9 10
|
ax-mp |
|- ( _I |` ( dom x u. ran x ) ) e. _V |
| 12 |
11 6
|
unex |
|- ( ( _I |` ( dom x u. ran x ) ) u. x ) e. _V |
| 13 |
12
|
a1i |
|- ( x e. _V -> ( ( _I |` ( dom x u. ran x ) ) u. x ) e. _V ) |
| 14 |
|
ssun2 |
|- x C_ ( ( _I |` ( dom x u. ran x ) ) u. x ) |
| 15 |
|
dmun |
|- dom ( ( _I |` ( dom x u. ran x ) ) u. x ) = ( dom ( _I |` ( dom x u. ran x ) ) u. dom x ) |
| 16 |
|
dmresi |
|- dom ( _I |` ( dom x u. ran x ) ) = ( dom x u. ran x ) |
| 17 |
16
|
uneq1i |
|- ( dom ( _I |` ( dom x u. ran x ) ) u. dom x ) = ( ( dom x u. ran x ) u. dom x ) |
| 18 |
|
un23 |
|- ( ( dom x u. ran x ) u. dom x ) = ( ( dom x u. dom x ) u. ran x ) |
| 19 |
|
unidm |
|- ( dom x u. dom x ) = dom x |
| 20 |
19
|
uneq1i |
|- ( ( dom x u. dom x ) u. ran x ) = ( dom x u. ran x ) |
| 21 |
18 20
|
eqtri |
|- ( ( dom x u. ran x ) u. dom x ) = ( dom x u. ran x ) |
| 22 |
15 17 21
|
3eqtri |
|- dom ( ( _I |` ( dom x u. ran x ) ) u. x ) = ( dom x u. ran x ) |
| 23 |
|
rnun |
|- ran ( ( _I |` ( dom x u. ran x ) ) u. x ) = ( ran ( _I |` ( dom x u. ran x ) ) u. ran x ) |
| 24 |
|
rnresi |
|- ran ( _I |` ( dom x u. ran x ) ) = ( dom x u. ran x ) |
| 25 |
24
|
uneq1i |
|- ( ran ( _I |` ( dom x u. ran x ) ) u. ran x ) = ( ( dom x u. ran x ) u. ran x ) |
| 26 |
|
unass |
|- ( ( dom x u. ran x ) u. ran x ) = ( dom x u. ( ran x u. ran x ) ) |
| 27 |
|
unidm |
|- ( ran x u. ran x ) = ran x |
| 28 |
27
|
uneq2i |
|- ( dom x u. ( ran x u. ran x ) ) = ( dom x u. ran x ) |
| 29 |
26 28
|
eqtri |
|- ( ( dom x u. ran x ) u. ran x ) = ( dom x u. ran x ) |
| 30 |
23 25 29
|
3eqtri |
|- ran ( ( _I |` ( dom x u. ran x ) ) u. x ) = ( dom x u. ran x ) |
| 31 |
22 30
|
uneq12i |
|- ( dom ( ( _I |` ( dom x u. ran x ) ) u. x ) u. ran ( ( _I |` ( dom x u. ran x ) ) u. x ) ) = ( ( dom x u. ran x ) u. ( dom x u. ran x ) ) |
| 32 |
|
unidm |
|- ( ( dom x u. ran x ) u. ( dom x u. ran x ) ) = ( dom x u. ran x ) |
| 33 |
31 32
|
eqtri |
|- ( dom ( ( _I |` ( dom x u. ran x ) ) u. x ) u. ran ( ( _I |` ( dom x u. ran x ) ) u. x ) ) = ( dom x u. ran x ) |
| 34 |
33
|
reseq2i |
|- ( _I |` ( dom ( ( _I |` ( dom x u. ran x ) ) u. x ) u. ran ( ( _I |` ( dom x u. ran x ) ) u. x ) ) ) = ( _I |` ( dom x u. ran x ) ) |
| 35 |
|
ssun1 |
|- ( _I |` ( dom x u. ran x ) ) C_ ( ( _I |` ( dom x u. ran x ) ) u. x ) |
| 36 |
34 35
|
eqsstri |
|- ( _I |` ( dom ( ( _I |` ( dom x u. ran x ) ) u. x ) u. ran ( ( _I |` ( dom x u. ran x ) ) u. x ) ) ) C_ ( ( _I |` ( dom x u. ran x ) ) u. x ) |
| 37 |
14 36
|
pm3.2i |
|- ( x C_ ( ( _I |` ( dom x u. ran x ) ) u. x ) /\ ( _I |` ( dom ( ( _I |` ( dom x u. ran x ) ) u. x ) u. ran ( ( _I |` ( dom x u. ran x ) ) u. x ) ) ) C_ ( ( _I |` ( dom x u. ran x ) ) u. x ) ) |
| 38 |
|
dmeq |
|- ( z = ( ( _I |` ( dom x u. ran x ) ) u. x ) -> dom z = dom ( ( _I |` ( dom x u. ran x ) ) u. x ) ) |
| 39 |
|
rneq |
|- ( z = ( ( _I |` ( dom x u. ran x ) ) u. x ) -> ran z = ran ( ( _I |` ( dom x u. ran x ) ) u. x ) ) |
| 40 |
38 39
|
uneq12d |
|- ( z = ( ( _I |` ( dom x u. ran x ) ) u. x ) -> ( dom z u. ran z ) = ( dom ( ( _I |` ( dom x u. ran x ) ) u. x ) u. ran ( ( _I |` ( dom x u. ran x ) ) u. x ) ) ) |
| 41 |
40
|
reseq2d |
|- ( z = ( ( _I |` ( dom x u. ran x ) ) u. x ) -> ( _I |` ( dom z u. ran z ) ) = ( _I |` ( dom ( ( _I |` ( dom x u. ran x ) ) u. x ) u. ran ( ( _I |` ( dom x u. ran x ) ) u. x ) ) ) ) |
| 42 |
|
id |
|- ( z = ( ( _I |` ( dom x u. ran x ) ) u. x ) -> z = ( ( _I |` ( dom x u. ran x ) ) u. x ) ) |
| 43 |
41 42
|
sseq12d |
|- ( z = ( ( _I |` ( dom x u. ran x ) ) u. x ) -> ( ( _I |` ( dom z u. ran z ) ) C_ z <-> ( _I |` ( dom ( ( _I |` ( dom x u. ran x ) ) u. x ) u. ran ( ( _I |` ( dom x u. ran x ) ) u. x ) ) ) C_ ( ( _I |` ( dom x u. ran x ) ) u. x ) ) ) |
| 44 |
43
|
cleq2lem |
|- ( z = ( ( _I |` ( dom x u. ran x ) ) u. x ) -> ( ( x C_ z /\ ( _I |` ( dom z u. ran z ) ) C_ z ) <-> ( x C_ ( ( _I |` ( dom x u. ran x ) ) u. x ) /\ ( _I |` ( dom ( ( _I |` ( dom x u. ran x ) ) u. x ) u. ran ( ( _I |` ( dom x u. ran x ) ) u. x ) ) ) C_ ( ( _I |` ( dom x u. ran x ) ) u. x ) ) ) ) |
| 45 |
44
|
intminss |
|- ( ( ( ( _I |` ( dom x u. ran x ) ) u. x ) e. _V /\ ( x C_ ( ( _I |` ( dom x u. ran x ) ) u. x ) /\ ( _I |` ( dom ( ( _I |` ( dom x u. ran x ) ) u. x ) u. ran ( ( _I |` ( dom x u. ran x ) ) u. x ) ) ) C_ ( ( _I |` ( dom x u. ran x ) ) u. x ) ) ) -> |^| { z e. _V | ( x C_ z /\ ( _I |` ( dom z u. ran z ) ) C_ z ) } C_ ( ( _I |` ( dom x u. ran x ) ) u. x ) ) |
| 46 |
13 37 45
|
sylancl |
|- ( x e. _V -> |^| { z e. _V | ( x C_ z /\ ( _I |` ( dom z u. ran z ) ) C_ z ) } C_ ( ( _I |` ( dom x u. ran x ) ) u. x ) ) |
| 47 |
5 46
|
eqsstrd |
|- ( x e. _V -> |^| { z | ( x C_ z /\ ( _I |` ( dom z u. ran z ) ) C_ z ) } C_ ( ( _I |` ( dom x u. ran x ) ) u. x ) ) |
| 48 |
|
dmss |
|- ( x C_ z -> dom x C_ dom z ) |
| 49 |
|
rnss |
|- ( x C_ z -> ran x C_ ran z ) |
| 50 |
|
unss12 |
|- ( ( dom x C_ dom z /\ ran x C_ ran z ) -> ( dom x u. ran x ) C_ ( dom z u. ran z ) ) |
| 51 |
48 49 50
|
syl2anc |
|- ( x C_ z -> ( dom x u. ran x ) C_ ( dom z u. ran z ) ) |
| 52 |
|
dfss |
|- ( ( dom x u. ran x ) C_ ( dom z u. ran z ) <-> ( dom x u. ran x ) = ( ( dom x u. ran x ) i^i ( dom z u. ran z ) ) ) |
| 53 |
51 52
|
sylib |
|- ( x C_ z -> ( dom x u. ran x ) = ( ( dom x u. ran x ) i^i ( dom z u. ran z ) ) ) |
| 54 |
|
incom |
|- ( ( dom x u. ran x ) i^i ( dom z u. ran z ) ) = ( ( dom z u. ran z ) i^i ( dom x u. ran x ) ) |
| 55 |
53 54
|
eqtrdi |
|- ( x C_ z -> ( dom x u. ran x ) = ( ( dom z u. ran z ) i^i ( dom x u. ran x ) ) ) |
| 56 |
55
|
reseq2d |
|- ( x C_ z -> ( _I |` ( dom x u. ran x ) ) = ( _I |` ( ( dom z u. ran z ) i^i ( dom x u. ran x ) ) ) ) |
| 57 |
|
resres |
|- ( ( _I |` ( dom z u. ran z ) ) |` ( dom x u. ran x ) ) = ( _I |` ( ( dom z u. ran z ) i^i ( dom x u. ran x ) ) ) |
| 58 |
56 57
|
eqtr4di |
|- ( x C_ z -> ( _I |` ( dom x u. ran x ) ) = ( ( _I |` ( dom z u. ran z ) ) |` ( dom x u. ran x ) ) ) |
| 59 |
|
resss |
|- ( ( _I |` ( dom z u. ran z ) ) |` ( dom x u. ran x ) ) C_ ( _I |` ( dom z u. ran z ) ) |
| 60 |
59
|
a1i |
|- ( x C_ z -> ( ( _I |` ( dom z u. ran z ) ) |` ( dom x u. ran x ) ) C_ ( _I |` ( dom z u. ran z ) ) ) |
| 61 |
58 60
|
eqsstrd |
|- ( x C_ z -> ( _I |` ( dom x u. ran x ) ) C_ ( _I |` ( dom z u. ran z ) ) ) |
| 62 |
61
|
adantr |
|- ( ( x C_ z /\ ( _I |` ( dom z u. ran z ) ) C_ z ) -> ( _I |` ( dom x u. ran x ) ) C_ ( _I |` ( dom z u. ran z ) ) ) |
| 63 |
|
simpr |
|- ( ( x C_ z /\ ( _I |` ( dom z u. ran z ) ) C_ z ) -> ( _I |` ( dom z u. ran z ) ) C_ z ) |
| 64 |
62 63
|
sstrd |
|- ( ( x C_ z /\ ( _I |` ( dom z u. ran z ) ) C_ z ) -> ( _I |` ( dom x u. ran x ) ) C_ z ) |
| 65 |
|
simpl |
|- ( ( x C_ z /\ ( _I |` ( dom z u. ran z ) ) C_ z ) -> x C_ z ) |
| 66 |
64 65
|
unssd |
|- ( ( x C_ z /\ ( _I |` ( dom z u. ran z ) ) C_ z ) -> ( ( _I |` ( dom x u. ran x ) ) u. x ) C_ z ) |
| 67 |
66
|
ax-gen |
|- A. z ( ( x C_ z /\ ( _I |` ( dom z u. ran z ) ) C_ z ) -> ( ( _I |` ( dom x u. ran x ) ) u. x ) C_ z ) |
| 68 |
67
|
a1i |
|- ( x e. _V -> A. z ( ( x C_ z /\ ( _I |` ( dom z u. ran z ) ) C_ z ) -> ( ( _I |` ( dom x u. ran x ) ) u. x ) C_ z ) ) |
| 69 |
|
ssintab |
|- ( ( ( _I |` ( dom x u. ran x ) ) u. x ) C_ |^| { z | ( x C_ z /\ ( _I |` ( dom z u. ran z ) ) C_ z ) } <-> A. z ( ( x C_ z /\ ( _I |` ( dom z u. ran z ) ) C_ z ) -> ( ( _I |` ( dom x u. ran x ) ) u. x ) C_ z ) ) |
| 70 |
68 69
|
sylibr |
|- ( x e. _V -> ( ( _I |` ( dom x u. ran x ) ) u. x ) C_ |^| { z | ( x C_ z /\ ( _I |` ( dom z u. ran z ) ) C_ z ) } ) |
| 71 |
47 70
|
eqssd |
|- ( x e. _V -> |^| { z | ( x C_ z /\ ( _I |` ( dom z u. ran z ) ) C_ z ) } = ( ( _I |` ( dom x u. ran x ) ) u. x ) ) |
| 72 |
71
|
mpteq2ia |
|- ( x e. _V |-> |^| { z | ( x C_ z /\ ( _I |` ( dom z u. ran z ) ) C_ z ) } ) = ( x e. _V |-> ( ( _I |` ( dom x u. ran x ) ) u. x ) ) |
| 73 |
1 72
|
eqtri |
|- r* = ( x e. _V |-> ( ( _I |` ( dom x u. ran x ) ) u. x ) ) |