Metamath Proof Explorer


Theorem dfrcl3

Description: Reflexive closure of a relation as union of powers of the relation. (Contributed by RP, 6-Jun-2020)

Ref Expression
Assertion dfrcl3
|- r* = ( x e. _V |-> ( ( x ^r 0 ) u. ( x ^r 1 ) ) )

Proof

Step Hyp Ref Expression
1 dfrcl2
 |-  r* = ( x e. _V |-> ( ( _I |` ( dom x u. ran x ) ) u. x ) )
2 relexp0g
 |-  ( x e. _V -> ( x ^r 0 ) = ( _I |` ( dom x u. ran x ) ) )
3 relexp1g
 |-  ( x e. _V -> ( x ^r 1 ) = x )
4 2 3 uneq12d
 |-  ( x e. _V -> ( ( x ^r 0 ) u. ( x ^r 1 ) ) = ( ( _I |` ( dom x u. ran x ) ) u. x ) )
5 4 mpteq2ia
 |-  ( x e. _V |-> ( ( x ^r 0 ) u. ( x ^r 1 ) ) ) = ( x e. _V |-> ( ( _I |` ( dom x u. ran x ) ) u. x ) )
6 1 5 eqtr4i
 |-  r* = ( x e. _V |-> ( ( x ^r 0 ) u. ( x ^r 1 ) ) )