Description: Reflexive closure of a relation as union of powers of the relation. (Contributed by RP, 6-Jun-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | dfrcl3 | |- r* = ( x e. _V |-> ( ( x ^r 0 ) u. ( x ^r 1 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfrcl2 | |- r* = ( x e. _V |-> ( ( _I |` ( dom x u. ran x ) ) u. x ) ) |
|
2 | relexp0g | |- ( x e. _V -> ( x ^r 0 ) = ( _I |` ( dom x u. ran x ) ) ) |
|
3 | relexp1g | |- ( x e. _V -> ( x ^r 1 ) = x ) |
|
4 | 2 3 | uneq12d | |- ( x e. _V -> ( ( x ^r 0 ) u. ( x ^r 1 ) ) = ( ( _I |` ( dom x u. ran x ) ) u. x ) ) |
5 | 4 | mpteq2ia | |- ( x e. _V |-> ( ( x ^r 0 ) u. ( x ^r 1 ) ) ) = ( x e. _V |-> ( ( _I |` ( dom x u. ran x ) ) u. x ) ) |
6 | 1 5 | eqtr4i | |- r* = ( x e. _V |-> ( ( x ^r 0 ) u. ( x ^r 1 ) ) ) |