Metamath Proof Explorer


Theorem dfrcl4

Description: Reflexive closure of a relation as indexed union of powers of the relation. (Contributed by RP, 8-Jun-2020)

Ref Expression
Assertion dfrcl4
|- r* = ( r e. _V |-> U_ n e. { 0 , 1 } ( r ^r n ) )

Proof

Step Hyp Ref Expression
1 dfrcl3
 |-  r* = ( r e. _V |-> ( ( r ^r 0 ) u. ( r ^r 1 ) ) )
2 df-pr
 |-  { 0 , 1 } = ( { 0 } u. { 1 } )
3 iuneq1
 |-  ( { 0 , 1 } = ( { 0 } u. { 1 } ) -> U_ n e. { 0 , 1 } ( r ^r n ) = U_ n e. ( { 0 } u. { 1 } ) ( r ^r n ) )
4 2 3 ax-mp
 |-  U_ n e. { 0 , 1 } ( r ^r n ) = U_ n e. ( { 0 } u. { 1 } ) ( r ^r n )
5 iunxun
 |-  U_ n e. ( { 0 } u. { 1 } ) ( r ^r n ) = ( U_ n e. { 0 } ( r ^r n ) u. U_ n e. { 1 } ( r ^r n ) )
6 c0ex
 |-  0 e. _V
7 oveq2
 |-  ( n = 0 -> ( r ^r n ) = ( r ^r 0 ) )
8 6 7 iunxsn
 |-  U_ n e. { 0 } ( r ^r n ) = ( r ^r 0 )
9 1ex
 |-  1 e. _V
10 oveq2
 |-  ( n = 1 -> ( r ^r n ) = ( r ^r 1 ) )
11 9 10 iunxsn
 |-  U_ n e. { 1 } ( r ^r n ) = ( r ^r 1 )
12 8 11 uneq12i
 |-  ( U_ n e. { 0 } ( r ^r n ) u. U_ n e. { 1 } ( r ^r n ) ) = ( ( r ^r 0 ) u. ( r ^r 1 ) )
13 4 5 12 3eqtri
 |-  U_ n e. { 0 , 1 } ( r ^r n ) = ( ( r ^r 0 ) u. ( r ^r 1 ) )
14 13 mpteq2i
 |-  ( r e. _V |-> U_ n e. { 0 , 1 } ( r ^r n ) ) = ( r e. _V |-> ( ( r ^r 0 ) u. ( r ^r 1 ) ) )
15 1 14 eqtr4i
 |-  r* = ( r e. _V |-> U_ n e. { 0 , 1 } ( r ^r n ) )