| Step |
Hyp |
Ref |
Expression |
| 0 |
|
crcl |
|- r* |
| 1 |
|
vx |
|- x |
| 2 |
|
cvv |
|- _V |
| 3 |
|
vz |
|- z |
| 4 |
1
|
cv |
|- x |
| 5 |
3
|
cv |
|- z |
| 6 |
4 5
|
wss |
|- x C_ z |
| 7 |
|
cid |
|- _I |
| 8 |
5
|
cdm |
|- dom z |
| 9 |
5
|
crn |
|- ran z |
| 10 |
8 9
|
cun |
|- ( dom z u. ran z ) |
| 11 |
7 10
|
cres |
|- ( _I |` ( dom z u. ran z ) ) |
| 12 |
11 5
|
wss |
|- ( _I |` ( dom z u. ran z ) ) C_ z |
| 13 |
6 12
|
wa |
|- ( x C_ z /\ ( _I |` ( dom z u. ran z ) ) C_ z ) |
| 14 |
13 3
|
cab |
|- { z | ( x C_ z /\ ( _I |` ( dom z u. ran z ) ) C_ z ) } |
| 15 |
14
|
cint |
|- |^| { z | ( x C_ z /\ ( _I |` ( dom z u. ran z ) ) C_ z ) } |
| 16 |
1 2 15
|
cmpt |
|- ( x e. _V |-> |^| { z | ( x C_ z /\ ( _I |` ( dom z u. ran z ) ) C_ z ) } ) |
| 17 |
0 16
|
wceq |
|- r* = ( x e. _V |-> |^| { z | ( x C_ z /\ ( _I |` ( dom z u. ran z ) ) C_ z ) } ) |