Metamath Proof Explorer


Definition df-rcl

Description: Reflexive closure of a relation. This is the smallest superset which has the reflexive property. (Contributed by RP, 5-Jun-2020)

Ref Expression
Assertion df-rcl
|- r* = ( x e. _V |-> |^| { z | ( x C_ z /\ ( _I |` ( dom z u. ran z ) ) C_ z ) } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 crcl
 |-  r*
1 vx
 |-  x
2 cvv
 |-  _V
3 vz
 |-  z
4 1 cv
 |-  x
5 3 cv
 |-  z
6 4 5 wss
 |-  x C_ z
7 cid
 |-  _I
8 5 cdm
 |-  dom z
9 5 crn
 |-  ran z
10 8 9 cun
 |-  ( dom z u. ran z )
11 7 10 cres
 |-  ( _I |` ( dom z u. ran z ) )
12 11 5 wss
 |-  ( _I |` ( dom z u. ran z ) ) C_ z
13 6 12 wa
 |-  ( x C_ z /\ ( _I |` ( dom z u. ran z ) ) C_ z )
14 13 3 cab
 |-  { z | ( x C_ z /\ ( _I |` ( dom z u. ran z ) ) C_ z ) }
15 14 cint
 |-  |^| { z | ( x C_ z /\ ( _I |` ( dom z u. ran z ) ) C_ z ) }
16 1 2 15 cmpt
 |-  ( x e. _V |-> |^| { z | ( x C_ z /\ ( _I |` ( dom z u. ran z ) ) C_ z ) } )
17 0 16 wceq
 |-  r* = ( x e. _V |-> |^| { z | ( x C_ z /\ ( _I |` ( dom z u. ran z ) ) C_ z ) } )