Metamath Proof Explorer


Definition df-rcl

Description: Reflexive closure of a relation. This is the smallest superset which has the reflexive property. (Contributed by RP, 5-Jun-2020)

Ref Expression
Assertion df-rcl r* = x V z | x z I dom z ran z z

Detailed syntax breakdown

Step Hyp Ref Expression
0 crcl class r*
1 vx setvar x
2 cvv class V
3 vz setvar z
4 1 cv setvar x
5 3 cv setvar z
6 4 5 wss wff x z
7 cid class I
8 5 cdm class dom z
9 5 crn class ran z
10 8 9 cun class dom z ran z
11 7 10 cres class I dom z ran z
12 11 5 wss wff I dom z ran z z
13 6 12 wa wff x z I dom z ran z z
14 13 3 cab class z | x z I dom z ran z z
15 14 cint class z | x z I dom z ran z z
16 1 2 15 cmpt class x V z | x z I dom z ran z z
17 0 16 wceq wff r* = x V z | x z I dom z ran z z