Metamath Proof Explorer


Definition df-rcl

Description: Reflexive closure of a relation. This is the smallest superset which has the reflexive property. (Contributed by RP, 5-Jun-2020)

Ref Expression
Assertion df-rcl r* = ( 𝑥 ∈ V ↦ { 𝑧 ∣ ( 𝑥𝑧 ∧ ( I ↾ ( dom 𝑧 ∪ ran 𝑧 ) ) ⊆ 𝑧 ) } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 crcl r*
1 vx 𝑥
2 cvv V
3 vz 𝑧
4 1 cv 𝑥
5 3 cv 𝑧
6 4 5 wss 𝑥𝑧
7 cid I
8 5 cdm dom 𝑧
9 5 crn ran 𝑧
10 8 9 cun ( dom 𝑧 ∪ ran 𝑧 )
11 7 10 cres ( I ↾ ( dom 𝑧 ∪ ran 𝑧 ) )
12 11 5 wss ( I ↾ ( dom 𝑧 ∪ ran 𝑧 ) ) ⊆ 𝑧
13 6 12 wa ( 𝑥𝑧 ∧ ( I ↾ ( dom 𝑧 ∪ ran 𝑧 ) ) ⊆ 𝑧 )
14 13 3 cab { 𝑧 ∣ ( 𝑥𝑧 ∧ ( I ↾ ( dom 𝑧 ∪ ran 𝑧 ) ) ⊆ 𝑧 ) }
15 14 cint { 𝑧 ∣ ( 𝑥𝑧 ∧ ( I ↾ ( dom 𝑧 ∪ ran 𝑧 ) ) ⊆ 𝑧 ) }
16 1 2 15 cmpt ( 𝑥 ∈ V ↦ { 𝑧 ∣ ( 𝑥𝑧 ∧ ( I ↾ ( dom 𝑧 ∪ ran 𝑧 ) ) ⊆ 𝑧 ) } )
17 0 16 wceq r* = ( 𝑥 ∈ V ↦ { 𝑧 ∣ ( 𝑥𝑧 ∧ ( I ↾ ( dom 𝑧 ∪ ran 𝑧 ) ) ⊆ 𝑧 ) } )