Step |
Hyp |
Ref |
Expression |
1 |
|
dfrcl4 |
⊢ r* = ( 𝑎 ∈ V ↦ ∪ 𝑖 ∈ { 0 , 1 } ( 𝑎 ↑𝑟 𝑖 ) ) |
2 |
|
dfrcl4 |
⊢ r* = ( 𝑏 ∈ V ↦ ∪ 𝑗 ∈ { 0 , 1 } ( 𝑏 ↑𝑟 𝑗 ) ) |
3 |
|
dfrcl4 |
⊢ r* = ( 𝑐 ∈ V ↦ ∪ 𝑘 ∈ { 0 , 1 } ( 𝑐 ↑𝑟 𝑘 ) ) |
4 |
|
prex |
⊢ { 0 , 1 } ∈ V |
5 |
|
unidm |
⊢ ( { 0 , 1 } ∪ { 0 , 1 } ) = { 0 , 1 } |
6 |
5
|
eqcomi |
⊢ { 0 , 1 } = ( { 0 , 1 } ∪ { 0 , 1 } ) |
7 |
|
oveq2 |
⊢ ( 𝑘 = 𝑗 → ( 𝑑 ↑𝑟 𝑘 ) = ( 𝑑 ↑𝑟 𝑗 ) ) |
8 |
7
|
cbviunv |
⊢ ∪ 𝑘 ∈ { 0 , 1 } ( 𝑑 ↑𝑟 𝑘 ) = ∪ 𝑗 ∈ { 0 , 1 } ( 𝑑 ↑𝑟 𝑗 ) |
9 |
|
1ex |
⊢ 1 ∈ V |
10 |
|
oveq2 |
⊢ ( 𝑖 = 1 → ( ∪ 𝑗 ∈ { 0 , 1 } ( 𝑑 ↑𝑟 𝑗 ) ↑𝑟 𝑖 ) = ( ∪ 𝑗 ∈ { 0 , 1 } ( 𝑑 ↑𝑟 𝑗 ) ↑𝑟 1 ) ) |
11 |
9 10
|
iunxsn |
⊢ ∪ 𝑖 ∈ { 1 } ( ∪ 𝑗 ∈ { 0 , 1 } ( 𝑑 ↑𝑟 𝑗 ) ↑𝑟 𝑖 ) = ( ∪ 𝑗 ∈ { 0 , 1 } ( 𝑑 ↑𝑟 𝑗 ) ↑𝑟 1 ) |
12 |
|
ovex |
⊢ ( 𝑑 ↑𝑟 𝑗 ) ∈ V |
13 |
4 12
|
iunex |
⊢ ∪ 𝑗 ∈ { 0 , 1 } ( 𝑑 ↑𝑟 𝑗 ) ∈ V |
14 |
|
relexp1g |
⊢ ( ∪ 𝑗 ∈ { 0 , 1 } ( 𝑑 ↑𝑟 𝑗 ) ∈ V → ( ∪ 𝑗 ∈ { 0 , 1 } ( 𝑑 ↑𝑟 𝑗 ) ↑𝑟 1 ) = ∪ 𝑗 ∈ { 0 , 1 } ( 𝑑 ↑𝑟 𝑗 ) ) |
15 |
13 14
|
ax-mp |
⊢ ( ∪ 𝑗 ∈ { 0 , 1 } ( 𝑑 ↑𝑟 𝑗 ) ↑𝑟 1 ) = ∪ 𝑗 ∈ { 0 , 1 } ( 𝑑 ↑𝑟 𝑗 ) |
16 |
11 15
|
eqtri |
⊢ ∪ 𝑖 ∈ { 1 } ( ∪ 𝑗 ∈ { 0 , 1 } ( 𝑑 ↑𝑟 𝑗 ) ↑𝑟 𝑖 ) = ∪ 𝑗 ∈ { 0 , 1 } ( 𝑑 ↑𝑟 𝑗 ) |
17 |
16
|
eqcomi |
⊢ ∪ 𝑗 ∈ { 0 , 1 } ( 𝑑 ↑𝑟 𝑗 ) = ∪ 𝑖 ∈ { 1 } ( ∪ 𝑗 ∈ { 0 , 1 } ( 𝑑 ↑𝑟 𝑗 ) ↑𝑟 𝑖 ) |
18 |
8 17
|
eqtri |
⊢ ∪ 𝑘 ∈ { 0 , 1 } ( 𝑑 ↑𝑟 𝑘 ) = ∪ 𝑖 ∈ { 1 } ( ∪ 𝑗 ∈ { 0 , 1 } ( 𝑑 ↑𝑟 𝑗 ) ↑𝑟 𝑖 ) |
19 |
|
snsspr2 |
⊢ { 1 } ⊆ { 0 , 1 } |
20 |
|
iunss1 |
⊢ ( { 1 } ⊆ { 0 , 1 } → ∪ 𝑖 ∈ { 1 } ( ∪ 𝑗 ∈ { 0 , 1 } ( 𝑑 ↑𝑟 𝑗 ) ↑𝑟 𝑖 ) ⊆ ∪ 𝑖 ∈ { 0 , 1 } ( ∪ 𝑗 ∈ { 0 , 1 } ( 𝑑 ↑𝑟 𝑗 ) ↑𝑟 𝑖 ) ) |
21 |
19 20
|
ax-mp |
⊢ ∪ 𝑖 ∈ { 1 } ( ∪ 𝑗 ∈ { 0 , 1 } ( 𝑑 ↑𝑟 𝑗 ) ↑𝑟 𝑖 ) ⊆ ∪ 𝑖 ∈ { 0 , 1 } ( ∪ 𝑗 ∈ { 0 , 1 } ( 𝑑 ↑𝑟 𝑗 ) ↑𝑟 𝑖 ) |
22 |
18 21
|
eqsstri |
⊢ ∪ 𝑘 ∈ { 0 , 1 } ( 𝑑 ↑𝑟 𝑘 ) ⊆ ∪ 𝑖 ∈ { 0 , 1 } ( ∪ 𝑗 ∈ { 0 , 1 } ( 𝑑 ↑𝑟 𝑗 ) ↑𝑟 𝑖 ) |
23 |
|
c0ex |
⊢ 0 ∈ V |
24 |
23
|
prid1 |
⊢ 0 ∈ { 0 , 1 } |
25 |
|
oveq2 |
⊢ ( 𝑘 = 0 → ( 𝑑 ↑𝑟 𝑘 ) = ( 𝑑 ↑𝑟 0 ) ) |
26 |
25
|
ssiun2s |
⊢ ( 0 ∈ { 0 , 1 } → ( 𝑑 ↑𝑟 0 ) ⊆ ∪ 𝑘 ∈ { 0 , 1 } ( 𝑑 ↑𝑟 𝑘 ) ) |
27 |
24 26
|
ax-mp |
⊢ ( 𝑑 ↑𝑟 0 ) ⊆ ∪ 𝑘 ∈ { 0 , 1 } ( 𝑑 ↑𝑟 𝑘 ) |
28 |
|
oveq2 |
⊢ ( 𝑗 = 𝑘 → ( 𝑑 ↑𝑟 𝑗 ) = ( 𝑑 ↑𝑟 𝑘 ) ) |
29 |
28
|
cbviunv |
⊢ ∪ 𝑗 ∈ { 0 , 1 } ( 𝑑 ↑𝑟 𝑗 ) = ∪ 𝑘 ∈ { 0 , 1 } ( 𝑑 ↑𝑟 𝑘 ) |
30 |
29
|
eqimssi |
⊢ ∪ 𝑗 ∈ { 0 , 1 } ( 𝑑 ↑𝑟 𝑗 ) ⊆ ∪ 𝑘 ∈ { 0 , 1 } ( 𝑑 ↑𝑟 𝑘 ) |
31 |
|
unss12 |
⊢ ( ( ( 𝑑 ↑𝑟 0 ) ⊆ ∪ 𝑘 ∈ { 0 , 1 } ( 𝑑 ↑𝑟 𝑘 ) ∧ ∪ 𝑗 ∈ { 0 , 1 } ( 𝑑 ↑𝑟 𝑗 ) ⊆ ∪ 𝑘 ∈ { 0 , 1 } ( 𝑑 ↑𝑟 𝑘 ) ) → ( ( 𝑑 ↑𝑟 0 ) ∪ ∪ 𝑗 ∈ { 0 , 1 } ( 𝑑 ↑𝑟 𝑗 ) ) ⊆ ( ∪ 𝑘 ∈ { 0 , 1 } ( 𝑑 ↑𝑟 𝑘 ) ∪ ∪ 𝑘 ∈ { 0 , 1 } ( 𝑑 ↑𝑟 𝑘 ) ) ) |
32 |
27 30 31
|
mp2an |
⊢ ( ( 𝑑 ↑𝑟 0 ) ∪ ∪ 𝑗 ∈ { 0 , 1 } ( 𝑑 ↑𝑟 𝑗 ) ) ⊆ ( ∪ 𝑘 ∈ { 0 , 1 } ( 𝑑 ↑𝑟 𝑘 ) ∪ ∪ 𝑘 ∈ { 0 , 1 } ( 𝑑 ↑𝑟 𝑘 ) ) |
33 |
|
df-pr |
⊢ { 0 , 1 } = ( { 0 } ∪ { 1 } ) |
34 |
|
iuneq1 |
⊢ ( { 0 , 1 } = ( { 0 } ∪ { 1 } ) → ∪ 𝑖 ∈ { 0 , 1 } ( ∪ 𝑗 ∈ { 0 , 1 } ( 𝑑 ↑𝑟 𝑗 ) ↑𝑟 𝑖 ) = ∪ 𝑖 ∈ ( { 0 } ∪ { 1 } ) ( ∪ 𝑗 ∈ { 0 , 1 } ( 𝑑 ↑𝑟 𝑗 ) ↑𝑟 𝑖 ) ) |
35 |
33 34
|
ax-mp |
⊢ ∪ 𝑖 ∈ { 0 , 1 } ( ∪ 𝑗 ∈ { 0 , 1 } ( 𝑑 ↑𝑟 𝑗 ) ↑𝑟 𝑖 ) = ∪ 𝑖 ∈ ( { 0 } ∪ { 1 } ) ( ∪ 𝑗 ∈ { 0 , 1 } ( 𝑑 ↑𝑟 𝑗 ) ↑𝑟 𝑖 ) |
36 |
|
iunxun |
⊢ ∪ 𝑖 ∈ ( { 0 } ∪ { 1 } ) ( ∪ 𝑗 ∈ { 0 , 1 } ( 𝑑 ↑𝑟 𝑗 ) ↑𝑟 𝑖 ) = ( ∪ 𝑖 ∈ { 0 } ( ∪ 𝑗 ∈ { 0 , 1 } ( 𝑑 ↑𝑟 𝑗 ) ↑𝑟 𝑖 ) ∪ ∪ 𝑖 ∈ { 1 } ( ∪ 𝑗 ∈ { 0 , 1 } ( 𝑑 ↑𝑟 𝑗 ) ↑𝑟 𝑖 ) ) |
37 |
|
oveq2 |
⊢ ( 𝑖 = 0 → ( ∪ 𝑗 ∈ { 0 , 1 } ( 𝑑 ↑𝑟 𝑗 ) ↑𝑟 𝑖 ) = ( ∪ 𝑗 ∈ { 0 , 1 } ( 𝑑 ↑𝑟 𝑗 ) ↑𝑟 0 ) ) |
38 |
23 37
|
iunxsn |
⊢ ∪ 𝑖 ∈ { 0 } ( ∪ 𝑗 ∈ { 0 , 1 } ( 𝑑 ↑𝑟 𝑗 ) ↑𝑟 𝑖 ) = ( ∪ 𝑗 ∈ { 0 , 1 } ( 𝑑 ↑𝑟 𝑗 ) ↑𝑟 0 ) |
39 |
|
vex |
⊢ 𝑑 ∈ V |
40 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
41 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
42 |
|
prssi |
⊢ ( ( 0 ∈ ℕ0 ∧ 1 ∈ ℕ0 ) → { 0 , 1 } ⊆ ℕ0 ) |
43 |
40 41 42
|
mp2an |
⊢ { 0 , 1 } ⊆ ℕ0 |
44 |
24 24
|
elini |
⊢ 0 ∈ ( { 0 , 1 } ∩ { 0 , 1 } ) |
45 |
44
|
ne0ii |
⊢ ( { 0 , 1 } ∩ { 0 , 1 } ) ≠ ∅ |
46 |
|
iunrelexp0 |
⊢ ( ( 𝑑 ∈ V ∧ { 0 , 1 } ⊆ ℕ0 ∧ ( { 0 , 1 } ∩ { 0 , 1 } ) ≠ ∅ ) → ( ∪ 𝑗 ∈ { 0 , 1 } ( 𝑑 ↑𝑟 𝑗 ) ↑𝑟 0 ) = ( 𝑑 ↑𝑟 0 ) ) |
47 |
39 43 45 46
|
mp3an |
⊢ ( ∪ 𝑗 ∈ { 0 , 1 } ( 𝑑 ↑𝑟 𝑗 ) ↑𝑟 0 ) = ( 𝑑 ↑𝑟 0 ) |
48 |
38 47
|
eqtri |
⊢ ∪ 𝑖 ∈ { 0 } ( ∪ 𝑗 ∈ { 0 , 1 } ( 𝑑 ↑𝑟 𝑗 ) ↑𝑟 𝑖 ) = ( 𝑑 ↑𝑟 0 ) |
49 |
48 16
|
uneq12i |
⊢ ( ∪ 𝑖 ∈ { 0 } ( ∪ 𝑗 ∈ { 0 , 1 } ( 𝑑 ↑𝑟 𝑗 ) ↑𝑟 𝑖 ) ∪ ∪ 𝑖 ∈ { 1 } ( ∪ 𝑗 ∈ { 0 , 1 } ( 𝑑 ↑𝑟 𝑗 ) ↑𝑟 𝑖 ) ) = ( ( 𝑑 ↑𝑟 0 ) ∪ ∪ 𝑗 ∈ { 0 , 1 } ( 𝑑 ↑𝑟 𝑗 ) ) |
50 |
36 49
|
eqtri |
⊢ ∪ 𝑖 ∈ ( { 0 } ∪ { 1 } ) ( ∪ 𝑗 ∈ { 0 , 1 } ( 𝑑 ↑𝑟 𝑗 ) ↑𝑟 𝑖 ) = ( ( 𝑑 ↑𝑟 0 ) ∪ ∪ 𝑗 ∈ { 0 , 1 } ( 𝑑 ↑𝑟 𝑗 ) ) |
51 |
35 50
|
eqtri |
⊢ ∪ 𝑖 ∈ { 0 , 1 } ( ∪ 𝑗 ∈ { 0 , 1 } ( 𝑑 ↑𝑟 𝑗 ) ↑𝑟 𝑖 ) = ( ( 𝑑 ↑𝑟 0 ) ∪ ∪ 𝑗 ∈ { 0 , 1 } ( 𝑑 ↑𝑟 𝑗 ) ) |
52 |
|
iunxun |
⊢ ∪ 𝑘 ∈ ( { 0 , 1 } ∪ { 0 , 1 } ) ( 𝑑 ↑𝑟 𝑘 ) = ( ∪ 𝑘 ∈ { 0 , 1 } ( 𝑑 ↑𝑟 𝑘 ) ∪ ∪ 𝑘 ∈ { 0 , 1 } ( 𝑑 ↑𝑟 𝑘 ) ) |
53 |
32 51 52
|
3sstr4i |
⊢ ∪ 𝑖 ∈ { 0 , 1 } ( ∪ 𝑗 ∈ { 0 , 1 } ( 𝑑 ↑𝑟 𝑗 ) ↑𝑟 𝑖 ) ⊆ ∪ 𝑘 ∈ ( { 0 , 1 } ∪ { 0 , 1 } ) ( 𝑑 ↑𝑟 𝑘 ) |
54 |
1 2 3 4 4 6 22 22 53
|
comptiunov2i |
⊢ ( r* ∘ r* ) = r* |