Metamath Proof Explorer


Theorem iunrelexp0

Description: Simplification of zeroth power of indexed union of powers of relations. (Contributed by RP, 19-Jun-2020)

Ref Expression
Assertion iunrelexp0 ( ( 𝑅𝑉𝑍 ⊆ ℕ0 ∧ ( { 0 , 1 } ∩ 𝑍 ) ≠ ∅ ) → ( 𝑥𝑍 ( 𝑅𝑟 𝑥 ) ↑𝑟 0 ) = ( 𝑅𝑟 0 ) )

Proof

Step Hyp Ref Expression
1 df-pr { 0 , 1 } = ( { 0 } ∪ { 1 } )
2 1 ineq1i ( { 0 , 1 } ∩ 𝑍 ) = ( ( { 0 } ∪ { 1 } ) ∩ 𝑍 )
3 indir ( ( { 0 } ∪ { 1 } ) ∩ 𝑍 ) = ( ( { 0 } ∩ 𝑍 ) ∪ ( { 1 } ∩ 𝑍 ) )
4 2 3 eqtr2i ( ( { 0 } ∩ 𝑍 ) ∪ ( { 1 } ∩ 𝑍 ) ) = ( { 0 , 1 } ∩ 𝑍 )
5 4 uneq1i ( ( ( { 0 } ∩ 𝑍 ) ∪ ( { 1 } ∩ 𝑍 ) ) ∪ 𝑍 ) = ( ( { 0 , 1 } ∩ 𝑍 ) ∪ 𝑍 )
6 inss2 ( { 0 , 1 } ∩ 𝑍 ) ⊆ 𝑍
7 ssequn1 ( ( { 0 , 1 } ∩ 𝑍 ) ⊆ 𝑍 ↔ ( ( { 0 , 1 } ∩ 𝑍 ) ∪ 𝑍 ) = 𝑍 )
8 6 7 mpbi ( ( { 0 , 1 } ∩ 𝑍 ) ∪ 𝑍 ) = 𝑍
9 5 8 eqtr2i 𝑍 = ( ( ( { 0 } ∩ 𝑍 ) ∪ ( { 1 } ∩ 𝑍 ) ) ∪ 𝑍 )
10 iuneq1 ( 𝑍 = ( ( ( { 0 } ∩ 𝑍 ) ∪ ( { 1 } ∩ 𝑍 ) ) ∪ 𝑍 ) → 𝑥𝑍 ( 𝑅𝑟 𝑥 ) = 𝑥 ∈ ( ( ( { 0 } ∩ 𝑍 ) ∪ ( { 1 } ∩ 𝑍 ) ) ∪ 𝑍 ) ( 𝑅𝑟 𝑥 ) )
11 10 oveq1d ( 𝑍 = ( ( ( { 0 } ∩ 𝑍 ) ∪ ( { 1 } ∩ 𝑍 ) ) ∪ 𝑍 ) → ( 𝑥𝑍 ( 𝑅𝑟 𝑥 ) ↑𝑟 0 ) = ( 𝑥 ∈ ( ( ( { 0 } ∩ 𝑍 ) ∪ ( { 1 } ∩ 𝑍 ) ) ∪ 𝑍 ) ( 𝑅𝑟 𝑥 ) ↑𝑟 0 ) )
12 9 11 ax-mp ( 𝑥𝑍 ( 𝑅𝑟 𝑥 ) ↑𝑟 0 ) = ( 𝑥 ∈ ( ( ( { 0 } ∩ 𝑍 ) ∪ ( { 1 } ∩ 𝑍 ) ) ∪ 𝑍 ) ( 𝑅𝑟 𝑥 ) ↑𝑟 0 )
13 dmiun dom 𝑥 ∈ ( ( ( { 0 } ∩ 𝑍 ) ∪ ( { 1 } ∩ 𝑍 ) ) ∪ 𝑍 ) ( 𝑅𝑟 𝑥 ) = 𝑥 ∈ ( ( ( { 0 } ∩ 𝑍 ) ∪ ( { 1 } ∩ 𝑍 ) ) ∪ 𝑍 ) dom ( 𝑅𝑟 𝑥 )
14 iunxun 𝑥 ∈ ( ( ( { 0 } ∩ 𝑍 ) ∪ ( { 1 } ∩ 𝑍 ) ) ∪ 𝑍 ) dom ( 𝑅𝑟 𝑥 ) = ( 𝑥 ∈ ( ( { 0 } ∩ 𝑍 ) ∪ ( { 1 } ∩ 𝑍 ) ) dom ( 𝑅𝑟 𝑥 ) ∪ 𝑥𝑍 dom ( 𝑅𝑟 𝑥 ) )
15 iunxun 𝑥 ∈ ( ( { 0 } ∩ 𝑍 ) ∪ ( { 1 } ∩ 𝑍 ) ) dom ( 𝑅𝑟 𝑥 ) = ( 𝑥 ∈ ( { 0 } ∩ 𝑍 ) dom ( 𝑅𝑟 𝑥 ) ∪ 𝑥 ∈ ( { 1 } ∩ 𝑍 ) dom ( 𝑅𝑟 𝑥 ) )
16 15 equncomi 𝑥 ∈ ( ( { 0 } ∩ 𝑍 ) ∪ ( { 1 } ∩ 𝑍 ) ) dom ( 𝑅𝑟 𝑥 ) = ( 𝑥 ∈ ( { 1 } ∩ 𝑍 ) dom ( 𝑅𝑟 𝑥 ) ∪ 𝑥 ∈ ( { 0 } ∩ 𝑍 ) dom ( 𝑅𝑟 𝑥 ) )
17 16 uneq1i ( 𝑥 ∈ ( ( { 0 } ∩ 𝑍 ) ∪ ( { 1 } ∩ 𝑍 ) ) dom ( 𝑅𝑟 𝑥 ) ∪ 𝑥𝑍 dom ( 𝑅𝑟 𝑥 ) ) = ( ( 𝑥 ∈ ( { 1 } ∩ 𝑍 ) dom ( 𝑅𝑟 𝑥 ) ∪ 𝑥 ∈ ( { 0 } ∩ 𝑍 ) dom ( 𝑅𝑟 𝑥 ) ) ∪ 𝑥𝑍 dom ( 𝑅𝑟 𝑥 ) )
18 17 equncomi ( 𝑥 ∈ ( ( { 0 } ∩ 𝑍 ) ∪ ( { 1 } ∩ 𝑍 ) ) dom ( 𝑅𝑟 𝑥 ) ∪ 𝑥𝑍 dom ( 𝑅𝑟 𝑥 ) ) = ( 𝑥𝑍 dom ( 𝑅𝑟 𝑥 ) ∪ ( 𝑥 ∈ ( { 1 } ∩ 𝑍 ) dom ( 𝑅𝑟 𝑥 ) ∪ 𝑥 ∈ ( { 0 } ∩ 𝑍 ) dom ( 𝑅𝑟 𝑥 ) ) )
19 13 14 18 3eqtri dom 𝑥 ∈ ( ( ( { 0 } ∩ 𝑍 ) ∪ ( { 1 } ∩ 𝑍 ) ) ∪ 𝑍 ) ( 𝑅𝑟 𝑥 ) = ( 𝑥𝑍 dom ( 𝑅𝑟 𝑥 ) ∪ ( 𝑥 ∈ ( { 1 } ∩ 𝑍 ) dom ( 𝑅𝑟 𝑥 ) ∪ 𝑥 ∈ ( { 0 } ∩ 𝑍 ) dom ( 𝑅𝑟 𝑥 ) ) )
20 rniun ran 𝑥 ∈ ( ( ( { 0 } ∩ 𝑍 ) ∪ ( { 1 } ∩ 𝑍 ) ) ∪ 𝑍 ) ( 𝑅𝑟 𝑥 ) = 𝑥 ∈ ( ( ( { 0 } ∩ 𝑍 ) ∪ ( { 1 } ∩ 𝑍 ) ) ∪ 𝑍 ) ran ( 𝑅𝑟 𝑥 )
21 iunxun 𝑥 ∈ ( ( ( { 0 } ∩ 𝑍 ) ∪ ( { 1 } ∩ 𝑍 ) ) ∪ 𝑍 ) ran ( 𝑅𝑟 𝑥 ) = ( 𝑥 ∈ ( ( { 0 } ∩ 𝑍 ) ∪ ( { 1 } ∩ 𝑍 ) ) ran ( 𝑅𝑟 𝑥 ) ∪ 𝑥𝑍 ran ( 𝑅𝑟 𝑥 ) )
22 iunxun 𝑥 ∈ ( ( { 0 } ∩ 𝑍 ) ∪ ( { 1 } ∩ 𝑍 ) ) ran ( 𝑅𝑟 𝑥 ) = ( 𝑥 ∈ ( { 0 } ∩ 𝑍 ) ran ( 𝑅𝑟 𝑥 ) ∪ 𝑥 ∈ ( { 1 } ∩ 𝑍 ) ran ( 𝑅𝑟 𝑥 ) )
23 22 uneq1i ( 𝑥 ∈ ( ( { 0 } ∩ 𝑍 ) ∪ ( { 1 } ∩ 𝑍 ) ) ran ( 𝑅𝑟 𝑥 ) ∪ 𝑥𝑍 ran ( 𝑅𝑟 𝑥 ) ) = ( ( 𝑥 ∈ ( { 0 } ∩ 𝑍 ) ran ( 𝑅𝑟 𝑥 ) ∪ 𝑥 ∈ ( { 1 } ∩ 𝑍 ) ran ( 𝑅𝑟 𝑥 ) ) ∪ 𝑥𝑍 ran ( 𝑅𝑟 𝑥 ) )
24 20 21 23 3eqtri ran 𝑥 ∈ ( ( ( { 0 } ∩ 𝑍 ) ∪ ( { 1 } ∩ 𝑍 ) ) ∪ 𝑍 ) ( 𝑅𝑟 𝑥 ) = ( ( 𝑥 ∈ ( { 0 } ∩ 𝑍 ) ran ( 𝑅𝑟 𝑥 ) ∪ 𝑥 ∈ ( { 1 } ∩ 𝑍 ) ran ( 𝑅𝑟 𝑥 ) ) ∪ 𝑥𝑍 ran ( 𝑅𝑟 𝑥 ) )
25 19 24 uneq12i ( dom 𝑥 ∈ ( ( ( { 0 } ∩ 𝑍 ) ∪ ( { 1 } ∩ 𝑍 ) ) ∪ 𝑍 ) ( 𝑅𝑟 𝑥 ) ∪ ran 𝑥 ∈ ( ( ( { 0 } ∩ 𝑍 ) ∪ ( { 1 } ∩ 𝑍 ) ) ∪ 𝑍 ) ( 𝑅𝑟 𝑥 ) ) = ( ( 𝑥𝑍 dom ( 𝑅𝑟 𝑥 ) ∪ ( 𝑥 ∈ ( { 1 } ∩ 𝑍 ) dom ( 𝑅𝑟 𝑥 ) ∪ 𝑥 ∈ ( { 0 } ∩ 𝑍 ) dom ( 𝑅𝑟 𝑥 ) ) ) ∪ ( ( 𝑥 ∈ ( { 0 } ∩ 𝑍 ) ran ( 𝑅𝑟 𝑥 ) ∪ 𝑥 ∈ ( { 1 } ∩ 𝑍 ) ran ( 𝑅𝑟 𝑥 ) ) ∪ 𝑥𝑍 ran ( 𝑅𝑟 𝑥 ) ) )
26 uncom ( 𝑥𝑍 dom ( 𝑅𝑟 𝑥 ) ∪ ( 𝑥 ∈ ( { 1 } ∩ 𝑍 ) dom ( 𝑅𝑟 𝑥 ) ∪ 𝑥 ∈ ( { 0 } ∩ 𝑍 ) dom ( 𝑅𝑟 𝑥 ) ) ) = ( ( 𝑥 ∈ ( { 1 } ∩ 𝑍 ) dom ( 𝑅𝑟 𝑥 ) ∪ 𝑥 ∈ ( { 0 } ∩ 𝑍 ) dom ( 𝑅𝑟 𝑥 ) ) ∪ 𝑥𝑍 dom ( 𝑅𝑟 𝑥 ) )
27 26 uneq1i ( ( 𝑥𝑍 dom ( 𝑅𝑟 𝑥 ) ∪ ( 𝑥 ∈ ( { 1 } ∩ 𝑍 ) dom ( 𝑅𝑟 𝑥 ) ∪ 𝑥 ∈ ( { 0 } ∩ 𝑍 ) dom ( 𝑅𝑟 𝑥 ) ) ) ∪ ( ( 𝑥 ∈ ( { 0 } ∩ 𝑍 ) ran ( 𝑅𝑟 𝑥 ) ∪ 𝑥 ∈ ( { 1 } ∩ 𝑍 ) ran ( 𝑅𝑟 𝑥 ) ) ∪ 𝑥𝑍 ran ( 𝑅𝑟 𝑥 ) ) ) = ( ( ( 𝑥 ∈ ( { 1 } ∩ 𝑍 ) dom ( 𝑅𝑟 𝑥 ) ∪ 𝑥 ∈ ( { 0 } ∩ 𝑍 ) dom ( 𝑅𝑟 𝑥 ) ) ∪ 𝑥𝑍 dom ( 𝑅𝑟 𝑥 ) ) ∪ ( ( 𝑥 ∈ ( { 0 } ∩ 𝑍 ) ran ( 𝑅𝑟 𝑥 ) ∪ 𝑥 ∈ ( { 1 } ∩ 𝑍 ) ran ( 𝑅𝑟 𝑥 ) ) ∪ 𝑥𝑍 ran ( 𝑅𝑟 𝑥 ) ) )
28 un4 ( ( ( 𝑥 ∈ ( { 1 } ∩ 𝑍 ) dom ( 𝑅𝑟 𝑥 ) ∪ 𝑥 ∈ ( { 0 } ∩ 𝑍 ) dom ( 𝑅𝑟 𝑥 ) ) ∪ 𝑥𝑍 dom ( 𝑅𝑟 𝑥 ) ) ∪ ( ( 𝑥 ∈ ( { 0 } ∩ 𝑍 ) ran ( 𝑅𝑟 𝑥 ) ∪ 𝑥 ∈ ( { 1 } ∩ 𝑍 ) ran ( 𝑅𝑟 𝑥 ) ) ∪ 𝑥𝑍 ran ( 𝑅𝑟 𝑥 ) ) ) = ( ( ( 𝑥 ∈ ( { 1 } ∩ 𝑍 ) dom ( 𝑅𝑟 𝑥 ) ∪ 𝑥 ∈ ( { 0 } ∩ 𝑍 ) dom ( 𝑅𝑟 𝑥 ) ) ∪ ( 𝑥 ∈ ( { 0 } ∩ 𝑍 ) ran ( 𝑅𝑟 𝑥 ) ∪ 𝑥 ∈ ( { 1 } ∩ 𝑍 ) ran ( 𝑅𝑟 𝑥 ) ) ) ∪ ( 𝑥𝑍 dom ( 𝑅𝑟 𝑥 ) ∪ 𝑥𝑍 ran ( 𝑅𝑟 𝑥 ) ) )
29 27 28 eqtri ( ( 𝑥𝑍 dom ( 𝑅𝑟 𝑥 ) ∪ ( 𝑥 ∈ ( { 1 } ∩ 𝑍 ) dom ( 𝑅𝑟 𝑥 ) ∪ 𝑥 ∈ ( { 0 } ∩ 𝑍 ) dom ( 𝑅𝑟 𝑥 ) ) ) ∪ ( ( 𝑥 ∈ ( { 0 } ∩ 𝑍 ) ran ( 𝑅𝑟 𝑥 ) ∪ 𝑥 ∈ ( { 1 } ∩ 𝑍 ) ran ( 𝑅𝑟 𝑥 ) ) ∪ 𝑥𝑍 ran ( 𝑅𝑟 𝑥 ) ) ) = ( ( ( 𝑥 ∈ ( { 1 } ∩ 𝑍 ) dom ( 𝑅𝑟 𝑥 ) ∪ 𝑥 ∈ ( { 0 } ∩ 𝑍 ) dom ( 𝑅𝑟 𝑥 ) ) ∪ ( 𝑥 ∈ ( { 0 } ∩ 𝑍 ) ran ( 𝑅𝑟 𝑥 ) ∪ 𝑥 ∈ ( { 1 } ∩ 𝑍 ) ran ( 𝑅𝑟 𝑥 ) ) ) ∪ ( 𝑥𝑍 dom ( 𝑅𝑟 𝑥 ) ∪ 𝑥𝑍 ran ( 𝑅𝑟 𝑥 ) ) )
30 uncom ( 𝑥 ∈ ( { 1 } ∩ 𝑍 ) dom ( 𝑅𝑟 𝑥 ) ∪ 𝑥 ∈ ( { 0 } ∩ 𝑍 ) dom ( 𝑅𝑟 𝑥 ) ) = ( 𝑥 ∈ ( { 0 } ∩ 𝑍 ) dom ( 𝑅𝑟 𝑥 ) ∪ 𝑥 ∈ ( { 1 } ∩ 𝑍 ) dom ( 𝑅𝑟 𝑥 ) )
31 30 uneq1i ( ( 𝑥 ∈ ( { 1 } ∩ 𝑍 ) dom ( 𝑅𝑟 𝑥 ) ∪ 𝑥 ∈ ( { 0 } ∩ 𝑍 ) dom ( 𝑅𝑟 𝑥 ) ) ∪ ( 𝑥 ∈ ( { 0 } ∩ 𝑍 ) ran ( 𝑅𝑟 𝑥 ) ∪ 𝑥 ∈ ( { 1 } ∩ 𝑍 ) ran ( 𝑅𝑟 𝑥 ) ) ) = ( ( 𝑥 ∈ ( { 0 } ∩ 𝑍 ) dom ( 𝑅𝑟 𝑥 ) ∪ 𝑥 ∈ ( { 1 } ∩ 𝑍 ) dom ( 𝑅𝑟 𝑥 ) ) ∪ ( 𝑥 ∈ ( { 0 } ∩ 𝑍 ) ran ( 𝑅𝑟 𝑥 ) ∪ 𝑥 ∈ ( { 1 } ∩ 𝑍 ) ran ( 𝑅𝑟 𝑥 ) ) )
32 un4 ( ( 𝑥 ∈ ( { 0 } ∩ 𝑍 ) dom ( 𝑅𝑟 𝑥 ) ∪ 𝑥 ∈ ( { 1 } ∩ 𝑍 ) dom ( 𝑅𝑟 𝑥 ) ) ∪ ( 𝑥 ∈ ( { 0 } ∩ 𝑍 ) ran ( 𝑅𝑟 𝑥 ) ∪ 𝑥 ∈ ( { 1 } ∩ 𝑍 ) ran ( 𝑅𝑟 𝑥 ) ) ) = ( ( 𝑥 ∈ ( { 0 } ∩ 𝑍 ) dom ( 𝑅𝑟 𝑥 ) ∪ 𝑥 ∈ ( { 0 } ∩ 𝑍 ) ran ( 𝑅𝑟 𝑥 ) ) ∪ ( 𝑥 ∈ ( { 1 } ∩ 𝑍 ) dom ( 𝑅𝑟 𝑥 ) ∪ 𝑥 ∈ ( { 1 } ∩ 𝑍 ) ran ( 𝑅𝑟 𝑥 ) ) )
33 31 32 eqtri ( ( 𝑥 ∈ ( { 1 } ∩ 𝑍 ) dom ( 𝑅𝑟 𝑥 ) ∪ 𝑥 ∈ ( { 0 } ∩ 𝑍 ) dom ( 𝑅𝑟 𝑥 ) ) ∪ ( 𝑥 ∈ ( { 0 } ∩ 𝑍 ) ran ( 𝑅𝑟 𝑥 ) ∪ 𝑥 ∈ ( { 1 } ∩ 𝑍 ) ran ( 𝑅𝑟 𝑥 ) ) ) = ( ( 𝑥 ∈ ( { 0 } ∩ 𝑍 ) dom ( 𝑅𝑟 𝑥 ) ∪ 𝑥 ∈ ( { 0 } ∩ 𝑍 ) ran ( 𝑅𝑟 𝑥 ) ) ∪ ( 𝑥 ∈ ( { 1 } ∩ 𝑍 ) dom ( 𝑅𝑟 𝑥 ) ∪ 𝑥 ∈ ( { 1 } ∩ 𝑍 ) ran ( 𝑅𝑟 𝑥 ) ) )
34 33 uneq1i ( ( ( 𝑥 ∈ ( { 1 } ∩ 𝑍 ) dom ( 𝑅𝑟 𝑥 ) ∪ 𝑥 ∈ ( { 0 } ∩ 𝑍 ) dom ( 𝑅𝑟 𝑥 ) ) ∪ ( 𝑥 ∈ ( { 0 } ∩ 𝑍 ) ran ( 𝑅𝑟 𝑥 ) ∪ 𝑥 ∈ ( { 1 } ∩ 𝑍 ) ran ( 𝑅𝑟 𝑥 ) ) ) ∪ ( 𝑥𝑍 dom ( 𝑅𝑟 𝑥 ) ∪ 𝑥𝑍 ran ( 𝑅𝑟 𝑥 ) ) ) = ( ( ( 𝑥 ∈ ( { 0 } ∩ 𝑍 ) dom ( 𝑅𝑟 𝑥 ) ∪ 𝑥 ∈ ( { 0 } ∩ 𝑍 ) ran ( 𝑅𝑟 𝑥 ) ) ∪ ( 𝑥 ∈ ( { 1 } ∩ 𝑍 ) dom ( 𝑅𝑟 𝑥 ) ∪ 𝑥 ∈ ( { 1 } ∩ 𝑍 ) ran ( 𝑅𝑟 𝑥 ) ) ) ∪ ( 𝑥𝑍 dom ( 𝑅𝑟 𝑥 ) ∪ 𝑥𝑍 ran ( 𝑅𝑟 𝑥 ) ) )
35 25 29 34 3eqtri ( dom 𝑥 ∈ ( ( ( { 0 } ∩ 𝑍 ) ∪ ( { 1 } ∩ 𝑍 ) ) ∪ 𝑍 ) ( 𝑅𝑟 𝑥 ) ∪ ran 𝑥 ∈ ( ( ( { 0 } ∩ 𝑍 ) ∪ ( { 1 } ∩ 𝑍 ) ) ∪ 𝑍 ) ( 𝑅𝑟 𝑥 ) ) = ( ( ( 𝑥 ∈ ( { 0 } ∩ 𝑍 ) dom ( 𝑅𝑟 𝑥 ) ∪ 𝑥 ∈ ( { 0 } ∩ 𝑍 ) ran ( 𝑅𝑟 𝑥 ) ) ∪ ( 𝑥 ∈ ( { 1 } ∩ 𝑍 ) dom ( 𝑅𝑟 𝑥 ) ∪ 𝑥 ∈ ( { 1 } ∩ 𝑍 ) ran ( 𝑅𝑟 𝑥 ) ) ) ∪ ( 𝑥𝑍 dom ( 𝑅𝑟 𝑥 ) ∪ 𝑥𝑍 ran ( 𝑅𝑟 𝑥 ) ) )
36 df-ne ( ( { 0 , 1 } ∩ 𝑍 ) ≠ ∅ ↔ ¬ ( { 0 , 1 } ∩ 𝑍 ) = ∅ )
37 incom ( { 0 , 1 } ∩ 𝑍 ) = ( 𝑍 ∩ { 0 , 1 } )
38 1 ineq2i ( 𝑍 ∩ { 0 , 1 } ) = ( 𝑍 ∩ ( { 0 } ∪ { 1 } ) )
39 indi ( 𝑍 ∩ ( { 0 } ∪ { 1 } ) ) = ( ( 𝑍 ∩ { 0 } ) ∪ ( 𝑍 ∩ { 1 } ) )
40 37 38 39 3eqtri ( { 0 , 1 } ∩ 𝑍 ) = ( ( 𝑍 ∩ { 0 } ) ∪ ( 𝑍 ∩ { 1 } ) )
41 40 eqeq1i ( ( { 0 , 1 } ∩ 𝑍 ) = ∅ ↔ ( ( 𝑍 ∩ { 0 } ) ∪ ( 𝑍 ∩ { 1 } ) ) = ∅ )
42 un00 ( ( ( 𝑍 ∩ { 0 } ) = ∅ ∧ ( 𝑍 ∩ { 1 } ) = ∅ ) ↔ ( ( 𝑍 ∩ { 0 } ) ∪ ( 𝑍 ∩ { 1 } ) ) = ∅ )
43 anor ( ( ( 𝑍 ∩ { 0 } ) = ∅ ∧ ( 𝑍 ∩ { 1 } ) = ∅ ) ↔ ¬ ( ¬ ( 𝑍 ∩ { 0 } ) = ∅ ∨ ¬ ( 𝑍 ∩ { 1 } ) = ∅ ) )
44 41 42 43 3bitr2i ( ( { 0 , 1 } ∩ 𝑍 ) = ∅ ↔ ¬ ( ¬ ( 𝑍 ∩ { 0 } ) = ∅ ∨ ¬ ( 𝑍 ∩ { 1 } ) = ∅ ) )
45 44 notbii ( ¬ ( { 0 , 1 } ∩ 𝑍 ) = ∅ ↔ ¬ ¬ ( ¬ ( 𝑍 ∩ { 0 } ) = ∅ ∨ ¬ ( 𝑍 ∩ { 1 } ) = ∅ ) )
46 notnotb ( ( ¬ ( 𝑍 ∩ { 0 } ) = ∅ ∨ ¬ ( 𝑍 ∩ { 1 } ) = ∅ ) ↔ ¬ ¬ ( ¬ ( 𝑍 ∩ { 0 } ) = ∅ ∨ ¬ ( 𝑍 ∩ { 1 } ) = ∅ ) )
47 disjsn ( ( 𝑍 ∩ { 0 } ) = ∅ ↔ ¬ 0 ∈ 𝑍 )
48 47 notbii ( ¬ ( 𝑍 ∩ { 0 } ) = ∅ ↔ ¬ ¬ 0 ∈ 𝑍 )
49 notnotb ( 0 ∈ 𝑍 ↔ ¬ ¬ 0 ∈ 𝑍 )
50 48 49 bitr4i ( ¬ ( 𝑍 ∩ { 0 } ) = ∅ ↔ 0 ∈ 𝑍 )
51 disjsn ( ( 𝑍 ∩ { 1 } ) = ∅ ↔ ¬ 1 ∈ 𝑍 )
52 51 notbii ( ¬ ( 𝑍 ∩ { 1 } ) = ∅ ↔ ¬ ¬ 1 ∈ 𝑍 )
53 notnotb ( 1 ∈ 𝑍 ↔ ¬ ¬ 1 ∈ 𝑍 )
54 52 53 bitr4i ( ¬ ( 𝑍 ∩ { 1 } ) = ∅ ↔ 1 ∈ 𝑍 )
55 50 54 orbi12i ( ( ¬ ( 𝑍 ∩ { 0 } ) = ∅ ∨ ¬ ( 𝑍 ∩ { 1 } ) = ∅ ) ↔ ( 0 ∈ 𝑍 ∨ 1 ∈ 𝑍 ) )
56 45 46 55 3bitr2i ( ¬ ( { 0 , 1 } ∩ 𝑍 ) = ∅ ↔ ( 0 ∈ 𝑍 ∨ 1 ∈ 𝑍 ) )
57 36 56 sylbb ( ( { 0 , 1 } ∩ 𝑍 ) ≠ ∅ → ( 0 ∈ 𝑍 ∨ 1 ∈ 𝑍 ) )
58 simpl ( ( 0 ∈ 𝑍 ∧ ( 𝑍 ⊆ ℕ0𝑅𝑉 ) ) → 0 ∈ 𝑍 )
59 58 snssd ( ( 0 ∈ 𝑍 ∧ ( 𝑍 ⊆ ℕ0𝑅𝑉 ) ) → { 0 } ⊆ 𝑍 )
60 df-ss ( { 0 } ⊆ 𝑍 ↔ ( { 0 } ∩ 𝑍 ) = { 0 } )
61 59 60 sylib ( ( 0 ∈ 𝑍 ∧ ( 𝑍 ⊆ ℕ0𝑅𝑉 ) ) → ( { 0 } ∩ 𝑍 ) = { 0 } )
62 61 iuneq1d ( ( 0 ∈ 𝑍 ∧ ( 𝑍 ⊆ ℕ0𝑅𝑉 ) ) → 𝑥 ∈ ( { 0 } ∩ 𝑍 ) dom ( 𝑅𝑟 𝑥 ) = 𝑥 ∈ { 0 } dom ( 𝑅𝑟 𝑥 ) )
63 c0ex 0 ∈ V
64 oveq2 ( 𝑥 = 0 → ( 𝑅𝑟 𝑥 ) = ( 𝑅𝑟 0 ) )
65 64 dmeqd ( 𝑥 = 0 → dom ( 𝑅𝑟 𝑥 ) = dom ( 𝑅𝑟 0 ) )
66 63 65 iunxsn 𝑥 ∈ { 0 } dom ( 𝑅𝑟 𝑥 ) = dom ( 𝑅𝑟 0 )
67 62 66 eqtrdi ( ( 0 ∈ 𝑍 ∧ ( 𝑍 ⊆ ℕ0𝑅𝑉 ) ) → 𝑥 ∈ ( { 0 } ∩ 𝑍 ) dom ( 𝑅𝑟 𝑥 ) = dom ( 𝑅𝑟 0 ) )
68 relexp0g ( 𝑅𝑉 → ( 𝑅𝑟 0 ) = ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) )
69 68 ad2antll ( ( 0 ∈ 𝑍 ∧ ( 𝑍 ⊆ ℕ0𝑅𝑉 ) ) → ( 𝑅𝑟 0 ) = ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) )
70 69 dmeqd ( ( 0 ∈ 𝑍 ∧ ( 𝑍 ⊆ ℕ0𝑅𝑉 ) ) → dom ( 𝑅𝑟 0 ) = dom ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) )
71 dmresi dom ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) = ( dom 𝑅 ∪ ran 𝑅 )
72 70 71 eqtrdi ( ( 0 ∈ 𝑍 ∧ ( 𝑍 ⊆ ℕ0𝑅𝑉 ) ) → dom ( 𝑅𝑟 0 ) = ( dom 𝑅 ∪ ran 𝑅 ) )
73 67 72 eqtrd ( ( 0 ∈ 𝑍 ∧ ( 𝑍 ⊆ ℕ0𝑅𝑉 ) ) → 𝑥 ∈ ( { 0 } ∩ 𝑍 ) dom ( 𝑅𝑟 𝑥 ) = ( dom 𝑅 ∪ ran 𝑅 ) )
74 61 iuneq1d ( ( 0 ∈ 𝑍 ∧ ( 𝑍 ⊆ ℕ0𝑅𝑉 ) ) → 𝑥 ∈ ( { 0 } ∩ 𝑍 ) ran ( 𝑅𝑟 𝑥 ) = 𝑥 ∈ { 0 } ran ( 𝑅𝑟 𝑥 ) )
75 64 rneqd ( 𝑥 = 0 → ran ( 𝑅𝑟 𝑥 ) = ran ( 𝑅𝑟 0 ) )
76 63 75 iunxsn 𝑥 ∈ { 0 } ran ( 𝑅𝑟 𝑥 ) = ran ( 𝑅𝑟 0 )
77 74 76 eqtrdi ( ( 0 ∈ 𝑍 ∧ ( 𝑍 ⊆ ℕ0𝑅𝑉 ) ) → 𝑥 ∈ ( { 0 } ∩ 𝑍 ) ran ( 𝑅𝑟 𝑥 ) = ran ( 𝑅𝑟 0 ) )
78 69 rneqd ( ( 0 ∈ 𝑍 ∧ ( 𝑍 ⊆ ℕ0𝑅𝑉 ) ) → ran ( 𝑅𝑟 0 ) = ran ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) )
79 rnresi ran ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) = ( dom 𝑅 ∪ ran 𝑅 )
80 78 79 eqtrdi ( ( 0 ∈ 𝑍 ∧ ( 𝑍 ⊆ ℕ0𝑅𝑉 ) ) → ran ( 𝑅𝑟 0 ) = ( dom 𝑅 ∪ ran 𝑅 ) )
81 77 80 eqtrd ( ( 0 ∈ 𝑍 ∧ ( 𝑍 ⊆ ℕ0𝑅𝑉 ) ) → 𝑥 ∈ ( { 0 } ∩ 𝑍 ) ran ( 𝑅𝑟 𝑥 ) = ( dom 𝑅 ∪ ran 𝑅 ) )
82 73 81 uneq12d ( ( 0 ∈ 𝑍 ∧ ( 𝑍 ⊆ ℕ0𝑅𝑉 ) ) → ( 𝑥 ∈ ( { 0 } ∩ 𝑍 ) dom ( 𝑅𝑟 𝑥 ) ∪ 𝑥 ∈ ( { 0 } ∩ 𝑍 ) ran ( 𝑅𝑟 𝑥 ) ) = ( ( dom 𝑅 ∪ ran 𝑅 ) ∪ ( dom 𝑅 ∪ ran 𝑅 ) ) )
83 unidm ( ( dom 𝑅 ∪ ran 𝑅 ) ∪ ( dom 𝑅 ∪ ran 𝑅 ) ) = ( dom 𝑅 ∪ ran 𝑅 )
84 82 83 eqtrdi ( ( 0 ∈ 𝑍 ∧ ( 𝑍 ⊆ ℕ0𝑅𝑉 ) ) → ( 𝑥 ∈ ( { 0 } ∩ 𝑍 ) dom ( 𝑅𝑟 𝑥 ) ∪ 𝑥 ∈ ( { 0 } ∩ 𝑍 ) ran ( 𝑅𝑟 𝑥 ) ) = ( dom 𝑅 ∪ ran 𝑅 ) )
85 84 uneq1d ( ( 0 ∈ 𝑍 ∧ ( 𝑍 ⊆ ℕ0𝑅𝑉 ) ) → ( ( 𝑥 ∈ ( { 0 } ∩ 𝑍 ) dom ( 𝑅𝑟 𝑥 ) ∪ 𝑥 ∈ ( { 0 } ∩ 𝑍 ) ran ( 𝑅𝑟 𝑥 ) ) ∪ ( 𝑥 ∈ ( { 1 } ∩ 𝑍 ) dom ( 𝑅𝑟 𝑥 ) ∪ 𝑥 ∈ ( { 1 } ∩ 𝑍 ) ran ( 𝑅𝑟 𝑥 ) ) ) = ( ( dom 𝑅 ∪ ran 𝑅 ) ∪ ( 𝑥 ∈ ( { 1 } ∩ 𝑍 ) dom ( 𝑅𝑟 𝑥 ) ∪ 𝑥 ∈ ( { 1 } ∩ 𝑍 ) ran ( 𝑅𝑟 𝑥 ) ) ) )
86 relexpdmg ( ( 𝑥 ∈ ℕ0𝑅𝑉 ) → dom ( 𝑅𝑟 𝑥 ) ⊆ ( dom 𝑅 ∪ ran 𝑅 ) )
87 86 expcom ( 𝑅𝑉 → ( 𝑥 ∈ ℕ0 → dom ( 𝑅𝑟 𝑥 ) ⊆ ( dom 𝑅 ∪ ran 𝑅 ) ) )
88 87 ralrimiv ( 𝑅𝑉 → ∀ 𝑥 ∈ ℕ0 dom ( 𝑅𝑟 𝑥 ) ⊆ ( dom 𝑅 ∪ ran 𝑅 ) )
89 88 ad2antll ( ( 0 ∈ 𝑍 ∧ ( 𝑍 ⊆ ℕ0𝑅𝑉 ) ) → ∀ 𝑥 ∈ ℕ0 dom ( 𝑅𝑟 𝑥 ) ⊆ ( dom 𝑅 ∪ ran 𝑅 ) )
90 olc ( 𝑍 ⊆ ℕ0 → ( { 1 } ⊆ ℕ0𝑍 ⊆ ℕ0 ) )
91 90 ad2antrl ( ( 0 ∈ 𝑍 ∧ ( 𝑍 ⊆ ℕ0𝑅𝑉 ) ) → ( { 1 } ⊆ ℕ0𝑍 ⊆ ℕ0 ) )
92 inss ( ( { 1 } ⊆ ℕ0𝑍 ⊆ ℕ0 ) → ( { 1 } ∩ 𝑍 ) ⊆ ℕ0 )
93 91 92 syl ( ( 0 ∈ 𝑍 ∧ ( 𝑍 ⊆ ℕ0𝑅𝑉 ) ) → ( { 1 } ∩ 𝑍 ) ⊆ ℕ0 )
94 93 sseld ( ( 0 ∈ 𝑍 ∧ ( 𝑍 ⊆ ℕ0𝑅𝑉 ) ) → ( 𝑥 ∈ ( { 1 } ∩ 𝑍 ) → 𝑥 ∈ ℕ0 ) )
95 94 imim1d ( ( 0 ∈ 𝑍 ∧ ( 𝑍 ⊆ ℕ0𝑅𝑉 ) ) → ( ( 𝑥 ∈ ℕ0 → dom ( 𝑅𝑟 𝑥 ) ⊆ ( dom 𝑅 ∪ ran 𝑅 ) ) → ( 𝑥 ∈ ( { 1 } ∩ 𝑍 ) → dom ( 𝑅𝑟 𝑥 ) ⊆ ( dom 𝑅 ∪ ran 𝑅 ) ) ) )
96 95 ralimdv2 ( ( 0 ∈ 𝑍 ∧ ( 𝑍 ⊆ ℕ0𝑅𝑉 ) ) → ( ∀ 𝑥 ∈ ℕ0 dom ( 𝑅𝑟 𝑥 ) ⊆ ( dom 𝑅 ∪ ran 𝑅 ) → ∀ 𝑥 ∈ ( { 1 } ∩ 𝑍 ) dom ( 𝑅𝑟 𝑥 ) ⊆ ( dom 𝑅 ∪ ran 𝑅 ) ) )
97 89 96 mpd ( ( 0 ∈ 𝑍 ∧ ( 𝑍 ⊆ ℕ0𝑅𝑉 ) ) → ∀ 𝑥 ∈ ( { 1 } ∩ 𝑍 ) dom ( 𝑅𝑟 𝑥 ) ⊆ ( dom 𝑅 ∪ ran 𝑅 ) )
98 iunss ( 𝑥 ∈ ( { 1 } ∩ 𝑍 ) dom ( 𝑅𝑟 𝑥 ) ⊆ ( dom 𝑅 ∪ ran 𝑅 ) ↔ ∀ 𝑥 ∈ ( { 1 } ∩ 𝑍 ) dom ( 𝑅𝑟 𝑥 ) ⊆ ( dom 𝑅 ∪ ran 𝑅 ) )
99 97 98 sylibr ( ( 0 ∈ 𝑍 ∧ ( 𝑍 ⊆ ℕ0𝑅𝑉 ) ) → 𝑥 ∈ ( { 1 } ∩ 𝑍 ) dom ( 𝑅𝑟 𝑥 ) ⊆ ( dom 𝑅 ∪ ran 𝑅 ) )
100 relexprng ( ( 𝑥 ∈ ℕ0𝑅𝑉 ) → ran ( 𝑅𝑟 𝑥 ) ⊆ ( dom 𝑅 ∪ ran 𝑅 ) )
101 100 expcom ( 𝑅𝑉 → ( 𝑥 ∈ ℕ0 → ran ( 𝑅𝑟 𝑥 ) ⊆ ( dom 𝑅 ∪ ran 𝑅 ) ) )
102 101 ralrimiv ( 𝑅𝑉 → ∀ 𝑥 ∈ ℕ0 ran ( 𝑅𝑟 𝑥 ) ⊆ ( dom 𝑅 ∪ ran 𝑅 ) )
103 102 ad2antll ( ( 0 ∈ 𝑍 ∧ ( 𝑍 ⊆ ℕ0𝑅𝑉 ) ) → ∀ 𝑥 ∈ ℕ0 ran ( 𝑅𝑟 𝑥 ) ⊆ ( dom 𝑅 ∪ ran 𝑅 ) )
104 94 imim1d ( ( 0 ∈ 𝑍 ∧ ( 𝑍 ⊆ ℕ0𝑅𝑉 ) ) → ( ( 𝑥 ∈ ℕ0 → ran ( 𝑅𝑟 𝑥 ) ⊆ ( dom 𝑅 ∪ ran 𝑅 ) ) → ( 𝑥 ∈ ( { 1 } ∩ 𝑍 ) → ran ( 𝑅𝑟 𝑥 ) ⊆ ( dom 𝑅 ∪ ran 𝑅 ) ) ) )
105 104 ralimdv2 ( ( 0 ∈ 𝑍 ∧ ( 𝑍 ⊆ ℕ0𝑅𝑉 ) ) → ( ∀ 𝑥 ∈ ℕ0 ran ( 𝑅𝑟 𝑥 ) ⊆ ( dom 𝑅 ∪ ran 𝑅 ) → ∀ 𝑥 ∈ ( { 1 } ∩ 𝑍 ) ran ( 𝑅𝑟 𝑥 ) ⊆ ( dom 𝑅 ∪ ran 𝑅 ) ) )
106 103 105 mpd ( ( 0 ∈ 𝑍 ∧ ( 𝑍 ⊆ ℕ0𝑅𝑉 ) ) → ∀ 𝑥 ∈ ( { 1 } ∩ 𝑍 ) ran ( 𝑅𝑟 𝑥 ) ⊆ ( dom 𝑅 ∪ ran 𝑅 ) )
107 iunss ( 𝑥 ∈ ( { 1 } ∩ 𝑍 ) ran ( 𝑅𝑟 𝑥 ) ⊆ ( dom 𝑅 ∪ ran 𝑅 ) ↔ ∀ 𝑥 ∈ ( { 1 } ∩ 𝑍 ) ran ( 𝑅𝑟 𝑥 ) ⊆ ( dom 𝑅 ∪ ran 𝑅 ) )
108 106 107 sylibr ( ( 0 ∈ 𝑍 ∧ ( 𝑍 ⊆ ℕ0𝑅𝑉 ) ) → 𝑥 ∈ ( { 1 } ∩ 𝑍 ) ran ( 𝑅𝑟 𝑥 ) ⊆ ( dom 𝑅 ∪ ran 𝑅 ) )
109 99 108 unssd ( ( 0 ∈ 𝑍 ∧ ( 𝑍 ⊆ ℕ0𝑅𝑉 ) ) → ( 𝑥 ∈ ( { 1 } ∩ 𝑍 ) dom ( 𝑅𝑟 𝑥 ) ∪ 𝑥 ∈ ( { 1 } ∩ 𝑍 ) ran ( 𝑅𝑟 𝑥 ) ) ⊆ ( dom 𝑅 ∪ ran 𝑅 ) )
110 ssequn2 ( ( 𝑥 ∈ ( { 1 } ∩ 𝑍 ) dom ( 𝑅𝑟 𝑥 ) ∪ 𝑥 ∈ ( { 1 } ∩ 𝑍 ) ran ( 𝑅𝑟 𝑥 ) ) ⊆ ( dom 𝑅 ∪ ran 𝑅 ) ↔ ( ( dom 𝑅 ∪ ran 𝑅 ) ∪ ( 𝑥 ∈ ( { 1 } ∩ 𝑍 ) dom ( 𝑅𝑟 𝑥 ) ∪ 𝑥 ∈ ( { 1 } ∩ 𝑍 ) ran ( 𝑅𝑟 𝑥 ) ) ) = ( dom 𝑅 ∪ ran 𝑅 ) )
111 109 110 sylib ( ( 0 ∈ 𝑍 ∧ ( 𝑍 ⊆ ℕ0𝑅𝑉 ) ) → ( ( dom 𝑅 ∪ ran 𝑅 ) ∪ ( 𝑥 ∈ ( { 1 } ∩ 𝑍 ) dom ( 𝑅𝑟 𝑥 ) ∪ 𝑥 ∈ ( { 1 } ∩ 𝑍 ) ran ( 𝑅𝑟 𝑥 ) ) ) = ( dom 𝑅 ∪ ran 𝑅 ) )
112 85 111 eqtrd ( ( 0 ∈ 𝑍 ∧ ( 𝑍 ⊆ ℕ0𝑅𝑉 ) ) → ( ( 𝑥 ∈ ( { 0 } ∩ 𝑍 ) dom ( 𝑅𝑟 𝑥 ) ∪ 𝑥 ∈ ( { 0 } ∩ 𝑍 ) ran ( 𝑅𝑟 𝑥 ) ) ∪ ( 𝑥 ∈ ( { 1 } ∩ 𝑍 ) dom ( 𝑅𝑟 𝑥 ) ∪ 𝑥 ∈ ( { 1 } ∩ 𝑍 ) ran ( 𝑅𝑟 𝑥 ) ) ) = ( dom 𝑅 ∪ ran 𝑅 ) )
113 112 ex ( 0 ∈ 𝑍 → ( ( 𝑍 ⊆ ℕ0𝑅𝑉 ) → ( ( 𝑥 ∈ ( { 0 } ∩ 𝑍 ) dom ( 𝑅𝑟 𝑥 ) ∪ 𝑥 ∈ ( { 0 } ∩ 𝑍 ) ran ( 𝑅𝑟 𝑥 ) ) ∪ ( 𝑥 ∈ ( { 1 } ∩ 𝑍 ) dom ( 𝑅𝑟 𝑥 ) ∪ 𝑥 ∈ ( { 1 } ∩ 𝑍 ) ran ( 𝑅𝑟 𝑥 ) ) ) = ( dom 𝑅 ∪ ran 𝑅 ) ) )
114 simpl ( ( 1 ∈ 𝑍 ∧ ( 𝑍 ⊆ ℕ0𝑅𝑉 ) ) → 1 ∈ 𝑍 )
115 114 snssd ( ( 1 ∈ 𝑍 ∧ ( 𝑍 ⊆ ℕ0𝑅𝑉 ) ) → { 1 } ⊆ 𝑍 )
116 df-ss ( { 1 } ⊆ 𝑍 ↔ ( { 1 } ∩ 𝑍 ) = { 1 } )
117 115 116 sylib ( ( 1 ∈ 𝑍 ∧ ( 𝑍 ⊆ ℕ0𝑅𝑉 ) ) → ( { 1 } ∩ 𝑍 ) = { 1 } )
118 117 iuneq1d ( ( 1 ∈ 𝑍 ∧ ( 𝑍 ⊆ ℕ0𝑅𝑉 ) ) → 𝑥 ∈ ( { 1 } ∩ 𝑍 ) dom ( 𝑅𝑟 𝑥 ) = 𝑥 ∈ { 1 } dom ( 𝑅𝑟 𝑥 ) )
119 1ex 1 ∈ V
120 oveq2 ( 𝑥 = 1 → ( 𝑅𝑟 𝑥 ) = ( 𝑅𝑟 1 ) )
121 120 dmeqd ( 𝑥 = 1 → dom ( 𝑅𝑟 𝑥 ) = dom ( 𝑅𝑟 1 ) )
122 119 121 iunxsn 𝑥 ∈ { 1 } dom ( 𝑅𝑟 𝑥 ) = dom ( 𝑅𝑟 1 )
123 118 122 eqtrdi ( ( 1 ∈ 𝑍 ∧ ( 𝑍 ⊆ ℕ0𝑅𝑉 ) ) → 𝑥 ∈ ( { 1 } ∩ 𝑍 ) dom ( 𝑅𝑟 𝑥 ) = dom ( 𝑅𝑟 1 ) )
124 relexp1g ( 𝑅𝑉 → ( 𝑅𝑟 1 ) = 𝑅 )
125 124 ad2antll ( ( 1 ∈ 𝑍 ∧ ( 𝑍 ⊆ ℕ0𝑅𝑉 ) ) → ( 𝑅𝑟 1 ) = 𝑅 )
126 125 dmeqd ( ( 1 ∈ 𝑍 ∧ ( 𝑍 ⊆ ℕ0𝑅𝑉 ) ) → dom ( 𝑅𝑟 1 ) = dom 𝑅 )
127 123 126 eqtrd ( ( 1 ∈ 𝑍 ∧ ( 𝑍 ⊆ ℕ0𝑅𝑉 ) ) → 𝑥 ∈ ( { 1 } ∩ 𝑍 ) dom ( 𝑅𝑟 𝑥 ) = dom 𝑅 )
128 117 iuneq1d ( ( 1 ∈ 𝑍 ∧ ( 𝑍 ⊆ ℕ0𝑅𝑉 ) ) → 𝑥 ∈ ( { 1 } ∩ 𝑍 ) ran ( 𝑅𝑟 𝑥 ) = 𝑥 ∈ { 1 } ran ( 𝑅𝑟 𝑥 ) )
129 120 rneqd ( 𝑥 = 1 → ran ( 𝑅𝑟 𝑥 ) = ran ( 𝑅𝑟 1 ) )
130 119 129 iunxsn 𝑥 ∈ { 1 } ran ( 𝑅𝑟 𝑥 ) = ran ( 𝑅𝑟 1 )
131 128 130 eqtrdi ( ( 1 ∈ 𝑍 ∧ ( 𝑍 ⊆ ℕ0𝑅𝑉 ) ) → 𝑥 ∈ ( { 1 } ∩ 𝑍 ) ran ( 𝑅𝑟 𝑥 ) = ran ( 𝑅𝑟 1 ) )
132 125 rneqd ( ( 1 ∈ 𝑍 ∧ ( 𝑍 ⊆ ℕ0𝑅𝑉 ) ) → ran ( 𝑅𝑟 1 ) = ran 𝑅 )
133 131 132 eqtrd ( ( 1 ∈ 𝑍 ∧ ( 𝑍 ⊆ ℕ0𝑅𝑉 ) ) → 𝑥 ∈ ( { 1 } ∩ 𝑍 ) ran ( 𝑅𝑟 𝑥 ) = ran 𝑅 )
134 127 133 uneq12d ( ( 1 ∈ 𝑍 ∧ ( 𝑍 ⊆ ℕ0𝑅𝑉 ) ) → ( 𝑥 ∈ ( { 1 } ∩ 𝑍 ) dom ( 𝑅𝑟 𝑥 ) ∪ 𝑥 ∈ ( { 1 } ∩ 𝑍 ) ran ( 𝑅𝑟 𝑥 ) ) = ( dom 𝑅 ∪ ran 𝑅 ) )
135 134 uneq2d ( ( 1 ∈ 𝑍 ∧ ( 𝑍 ⊆ ℕ0𝑅𝑉 ) ) → ( ( 𝑥 ∈ ( { 0 } ∩ 𝑍 ) dom ( 𝑅𝑟 𝑥 ) ∪ 𝑥 ∈ ( { 0 } ∩ 𝑍 ) ran ( 𝑅𝑟 𝑥 ) ) ∪ ( 𝑥 ∈ ( { 1 } ∩ 𝑍 ) dom ( 𝑅𝑟 𝑥 ) ∪ 𝑥 ∈ ( { 1 } ∩ 𝑍 ) ran ( 𝑅𝑟 𝑥 ) ) ) = ( ( 𝑥 ∈ ( { 0 } ∩ 𝑍 ) dom ( 𝑅𝑟 𝑥 ) ∪ 𝑥 ∈ ( { 0 } ∩ 𝑍 ) ran ( 𝑅𝑟 𝑥 ) ) ∪ ( dom 𝑅 ∪ ran 𝑅 ) ) )
136 88 ad2antll ( ( 1 ∈ 𝑍 ∧ ( 𝑍 ⊆ ℕ0𝑅𝑉 ) ) → ∀ 𝑥 ∈ ℕ0 dom ( 𝑅𝑟 𝑥 ) ⊆ ( dom 𝑅 ∪ ran 𝑅 ) )
137 olc ( 𝑍 ⊆ ℕ0 → ( { 0 } ⊆ ℕ0𝑍 ⊆ ℕ0 ) )
138 137 ad2antrl ( ( 1 ∈ 𝑍 ∧ ( 𝑍 ⊆ ℕ0𝑅𝑉 ) ) → ( { 0 } ⊆ ℕ0𝑍 ⊆ ℕ0 ) )
139 inss ( ( { 0 } ⊆ ℕ0𝑍 ⊆ ℕ0 ) → ( { 0 } ∩ 𝑍 ) ⊆ ℕ0 )
140 138 139 syl ( ( 1 ∈ 𝑍 ∧ ( 𝑍 ⊆ ℕ0𝑅𝑉 ) ) → ( { 0 } ∩ 𝑍 ) ⊆ ℕ0 )
141 140 sseld ( ( 1 ∈ 𝑍 ∧ ( 𝑍 ⊆ ℕ0𝑅𝑉 ) ) → ( 𝑥 ∈ ( { 0 } ∩ 𝑍 ) → 𝑥 ∈ ℕ0 ) )
142 141 imim1d ( ( 1 ∈ 𝑍 ∧ ( 𝑍 ⊆ ℕ0𝑅𝑉 ) ) → ( ( 𝑥 ∈ ℕ0 → dom ( 𝑅𝑟 𝑥 ) ⊆ ( dom 𝑅 ∪ ran 𝑅 ) ) → ( 𝑥 ∈ ( { 0 } ∩ 𝑍 ) → dom ( 𝑅𝑟 𝑥 ) ⊆ ( dom 𝑅 ∪ ran 𝑅 ) ) ) )
143 142 ralimdv2 ( ( 1 ∈ 𝑍 ∧ ( 𝑍 ⊆ ℕ0𝑅𝑉 ) ) → ( ∀ 𝑥 ∈ ℕ0 dom ( 𝑅𝑟 𝑥 ) ⊆ ( dom 𝑅 ∪ ran 𝑅 ) → ∀ 𝑥 ∈ ( { 0 } ∩ 𝑍 ) dom ( 𝑅𝑟 𝑥 ) ⊆ ( dom 𝑅 ∪ ran 𝑅 ) ) )
144 136 143 mpd ( ( 1 ∈ 𝑍 ∧ ( 𝑍 ⊆ ℕ0𝑅𝑉 ) ) → ∀ 𝑥 ∈ ( { 0 } ∩ 𝑍 ) dom ( 𝑅𝑟 𝑥 ) ⊆ ( dom 𝑅 ∪ ran 𝑅 ) )
145 iunss ( 𝑥 ∈ ( { 0 } ∩ 𝑍 ) dom ( 𝑅𝑟 𝑥 ) ⊆ ( dom 𝑅 ∪ ran 𝑅 ) ↔ ∀ 𝑥 ∈ ( { 0 } ∩ 𝑍 ) dom ( 𝑅𝑟 𝑥 ) ⊆ ( dom 𝑅 ∪ ran 𝑅 ) )
146 144 145 sylibr ( ( 1 ∈ 𝑍 ∧ ( 𝑍 ⊆ ℕ0𝑅𝑉 ) ) → 𝑥 ∈ ( { 0 } ∩ 𝑍 ) dom ( 𝑅𝑟 𝑥 ) ⊆ ( dom 𝑅 ∪ ran 𝑅 ) )
147 102 ad2antll ( ( 1 ∈ 𝑍 ∧ ( 𝑍 ⊆ ℕ0𝑅𝑉 ) ) → ∀ 𝑥 ∈ ℕ0 ran ( 𝑅𝑟 𝑥 ) ⊆ ( dom 𝑅 ∪ ran 𝑅 ) )
148 141 imim1d ( ( 1 ∈ 𝑍 ∧ ( 𝑍 ⊆ ℕ0𝑅𝑉 ) ) → ( ( 𝑥 ∈ ℕ0 → ran ( 𝑅𝑟 𝑥 ) ⊆ ( dom 𝑅 ∪ ran 𝑅 ) ) → ( 𝑥 ∈ ( { 0 } ∩ 𝑍 ) → ran ( 𝑅𝑟 𝑥 ) ⊆ ( dom 𝑅 ∪ ran 𝑅 ) ) ) )
149 148 ralimdv2 ( ( 1 ∈ 𝑍 ∧ ( 𝑍 ⊆ ℕ0𝑅𝑉 ) ) → ( ∀ 𝑥 ∈ ℕ0 ran ( 𝑅𝑟 𝑥 ) ⊆ ( dom 𝑅 ∪ ran 𝑅 ) → ∀ 𝑥 ∈ ( { 0 } ∩ 𝑍 ) ran ( 𝑅𝑟 𝑥 ) ⊆ ( dom 𝑅 ∪ ran 𝑅 ) ) )
150 147 149 mpd ( ( 1 ∈ 𝑍 ∧ ( 𝑍 ⊆ ℕ0𝑅𝑉 ) ) → ∀ 𝑥 ∈ ( { 0 } ∩ 𝑍 ) ran ( 𝑅𝑟 𝑥 ) ⊆ ( dom 𝑅 ∪ ran 𝑅 ) )
151 iunss ( 𝑥 ∈ ( { 0 } ∩ 𝑍 ) ran ( 𝑅𝑟 𝑥 ) ⊆ ( dom 𝑅 ∪ ran 𝑅 ) ↔ ∀ 𝑥 ∈ ( { 0 } ∩ 𝑍 ) ran ( 𝑅𝑟 𝑥 ) ⊆ ( dom 𝑅 ∪ ran 𝑅 ) )
152 150 151 sylibr ( ( 1 ∈ 𝑍 ∧ ( 𝑍 ⊆ ℕ0𝑅𝑉 ) ) → 𝑥 ∈ ( { 0 } ∩ 𝑍 ) ran ( 𝑅𝑟 𝑥 ) ⊆ ( dom 𝑅 ∪ ran 𝑅 ) )
153 146 152 unssd ( ( 1 ∈ 𝑍 ∧ ( 𝑍 ⊆ ℕ0𝑅𝑉 ) ) → ( 𝑥 ∈ ( { 0 } ∩ 𝑍 ) dom ( 𝑅𝑟 𝑥 ) ∪ 𝑥 ∈ ( { 0 } ∩ 𝑍 ) ran ( 𝑅𝑟 𝑥 ) ) ⊆ ( dom 𝑅 ∪ ran 𝑅 ) )
154 ssequn1 ( ( 𝑥 ∈ ( { 0 } ∩ 𝑍 ) dom ( 𝑅𝑟 𝑥 ) ∪ 𝑥 ∈ ( { 0 } ∩ 𝑍 ) ran ( 𝑅𝑟 𝑥 ) ) ⊆ ( dom 𝑅 ∪ ran 𝑅 ) ↔ ( ( 𝑥 ∈ ( { 0 } ∩ 𝑍 ) dom ( 𝑅𝑟 𝑥 ) ∪ 𝑥 ∈ ( { 0 } ∩ 𝑍 ) ran ( 𝑅𝑟 𝑥 ) ) ∪ ( dom 𝑅 ∪ ran 𝑅 ) ) = ( dom 𝑅 ∪ ran 𝑅 ) )
155 153 154 sylib ( ( 1 ∈ 𝑍 ∧ ( 𝑍 ⊆ ℕ0𝑅𝑉 ) ) → ( ( 𝑥 ∈ ( { 0 } ∩ 𝑍 ) dom ( 𝑅𝑟 𝑥 ) ∪ 𝑥 ∈ ( { 0 } ∩ 𝑍 ) ran ( 𝑅𝑟 𝑥 ) ) ∪ ( dom 𝑅 ∪ ran 𝑅 ) ) = ( dom 𝑅 ∪ ran 𝑅 ) )
156 135 155 eqtrd ( ( 1 ∈ 𝑍 ∧ ( 𝑍 ⊆ ℕ0𝑅𝑉 ) ) → ( ( 𝑥 ∈ ( { 0 } ∩ 𝑍 ) dom ( 𝑅𝑟 𝑥 ) ∪ 𝑥 ∈ ( { 0 } ∩ 𝑍 ) ran ( 𝑅𝑟 𝑥 ) ) ∪ ( 𝑥 ∈ ( { 1 } ∩ 𝑍 ) dom ( 𝑅𝑟 𝑥 ) ∪ 𝑥 ∈ ( { 1 } ∩ 𝑍 ) ran ( 𝑅𝑟 𝑥 ) ) ) = ( dom 𝑅 ∪ ran 𝑅 ) )
157 156 ex ( 1 ∈ 𝑍 → ( ( 𝑍 ⊆ ℕ0𝑅𝑉 ) → ( ( 𝑥 ∈ ( { 0 } ∩ 𝑍 ) dom ( 𝑅𝑟 𝑥 ) ∪ 𝑥 ∈ ( { 0 } ∩ 𝑍 ) ran ( 𝑅𝑟 𝑥 ) ) ∪ ( 𝑥 ∈ ( { 1 } ∩ 𝑍 ) dom ( 𝑅𝑟 𝑥 ) ∪ 𝑥 ∈ ( { 1 } ∩ 𝑍 ) ran ( 𝑅𝑟 𝑥 ) ) ) = ( dom 𝑅 ∪ ran 𝑅 ) ) )
158 113 157 jaoi ( ( 0 ∈ 𝑍 ∨ 1 ∈ 𝑍 ) → ( ( 𝑍 ⊆ ℕ0𝑅𝑉 ) → ( ( 𝑥 ∈ ( { 0 } ∩ 𝑍 ) dom ( 𝑅𝑟 𝑥 ) ∪ 𝑥 ∈ ( { 0 } ∩ 𝑍 ) ran ( 𝑅𝑟 𝑥 ) ) ∪ ( 𝑥 ∈ ( { 1 } ∩ 𝑍 ) dom ( 𝑅𝑟 𝑥 ) ∪ 𝑥 ∈ ( { 1 } ∩ 𝑍 ) ran ( 𝑅𝑟 𝑥 ) ) ) = ( dom 𝑅 ∪ ran 𝑅 ) ) )
159 57 158 syl ( ( { 0 , 1 } ∩ 𝑍 ) ≠ ∅ → ( ( 𝑍 ⊆ ℕ0𝑅𝑉 ) → ( ( 𝑥 ∈ ( { 0 } ∩ 𝑍 ) dom ( 𝑅𝑟 𝑥 ) ∪ 𝑥 ∈ ( { 0 } ∩ 𝑍 ) ran ( 𝑅𝑟 𝑥 ) ) ∪ ( 𝑥 ∈ ( { 1 } ∩ 𝑍 ) dom ( 𝑅𝑟 𝑥 ) ∪ 𝑥 ∈ ( { 1 } ∩ 𝑍 ) ran ( 𝑅𝑟 𝑥 ) ) ) = ( dom 𝑅 ∪ ran 𝑅 ) ) )
160 159 3impib ( ( ( { 0 , 1 } ∩ 𝑍 ) ≠ ∅ ∧ 𝑍 ⊆ ℕ0𝑅𝑉 ) → ( ( 𝑥 ∈ ( { 0 } ∩ 𝑍 ) dom ( 𝑅𝑟 𝑥 ) ∪ 𝑥 ∈ ( { 0 } ∩ 𝑍 ) ran ( 𝑅𝑟 𝑥 ) ) ∪ ( 𝑥 ∈ ( { 1 } ∩ 𝑍 ) dom ( 𝑅𝑟 𝑥 ) ∪ 𝑥 ∈ ( { 1 } ∩ 𝑍 ) ran ( 𝑅𝑟 𝑥 ) ) ) = ( dom 𝑅 ∪ ran 𝑅 ) )
161 160 3com13 ( ( 𝑅𝑉𝑍 ⊆ ℕ0 ∧ ( { 0 , 1 } ∩ 𝑍 ) ≠ ∅ ) → ( ( 𝑥 ∈ ( { 0 } ∩ 𝑍 ) dom ( 𝑅𝑟 𝑥 ) ∪ 𝑥 ∈ ( { 0 } ∩ 𝑍 ) ran ( 𝑅𝑟 𝑥 ) ) ∪ ( 𝑥 ∈ ( { 1 } ∩ 𝑍 ) dom ( 𝑅𝑟 𝑥 ) ∪ 𝑥 ∈ ( { 1 } ∩ 𝑍 ) ran ( 𝑅𝑟 𝑥 ) ) ) = ( dom 𝑅 ∪ ran 𝑅 ) )
162 161 uneq1d ( ( 𝑅𝑉𝑍 ⊆ ℕ0 ∧ ( { 0 , 1 } ∩ 𝑍 ) ≠ ∅ ) → ( ( ( 𝑥 ∈ ( { 0 } ∩ 𝑍 ) dom ( 𝑅𝑟 𝑥 ) ∪ 𝑥 ∈ ( { 0 } ∩ 𝑍 ) ran ( 𝑅𝑟 𝑥 ) ) ∪ ( 𝑥 ∈ ( { 1 } ∩ 𝑍 ) dom ( 𝑅𝑟 𝑥 ) ∪ 𝑥 ∈ ( { 1 } ∩ 𝑍 ) ran ( 𝑅𝑟 𝑥 ) ) ) ∪ ( 𝑥𝑍 dom ( 𝑅𝑟 𝑥 ) ∪ 𝑥𝑍 ran ( 𝑅𝑟 𝑥 ) ) ) = ( ( dom 𝑅 ∪ ran 𝑅 ) ∪ ( 𝑥𝑍 dom ( 𝑅𝑟 𝑥 ) ∪ 𝑥𝑍 ran ( 𝑅𝑟 𝑥 ) ) ) )
163 88 adantr ( ( 𝑅𝑉𝑍 ⊆ ℕ0 ) → ∀ 𝑥 ∈ ℕ0 dom ( 𝑅𝑟 𝑥 ) ⊆ ( dom 𝑅 ∪ ran 𝑅 ) )
164 ssel ( 𝑍 ⊆ ℕ0 → ( 𝑥𝑍𝑥 ∈ ℕ0 ) )
165 164 adantl ( ( 𝑅𝑉𝑍 ⊆ ℕ0 ) → ( 𝑥𝑍𝑥 ∈ ℕ0 ) )
166 165 imim1d ( ( 𝑅𝑉𝑍 ⊆ ℕ0 ) → ( ( 𝑥 ∈ ℕ0 → dom ( 𝑅𝑟 𝑥 ) ⊆ ( dom 𝑅 ∪ ran 𝑅 ) ) → ( 𝑥𝑍 → dom ( 𝑅𝑟 𝑥 ) ⊆ ( dom 𝑅 ∪ ran 𝑅 ) ) ) )
167 166 ralimdv2 ( ( 𝑅𝑉𝑍 ⊆ ℕ0 ) → ( ∀ 𝑥 ∈ ℕ0 dom ( 𝑅𝑟 𝑥 ) ⊆ ( dom 𝑅 ∪ ran 𝑅 ) → ∀ 𝑥𝑍 dom ( 𝑅𝑟 𝑥 ) ⊆ ( dom 𝑅 ∪ ran 𝑅 ) ) )
168 163 167 mpd ( ( 𝑅𝑉𝑍 ⊆ ℕ0 ) → ∀ 𝑥𝑍 dom ( 𝑅𝑟 𝑥 ) ⊆ ( dom 𝑅 ∪ ran 𝑅 ) )
169 iunss ( 𝑥𝑍 dom ( 𝑅𝑟 𝑥 ) ⊆ ( dom 𝑅 ∪ ran 𝑅 ) ↔ ∀ 𝑥𝑍 dom ( 𝑅𝑟 𝑥 ) ⊆ ( dom 𝑅 ∪ ran 𝑅 ) )
170 168 169 sylibr ( ( 𝑅𝑉𝑍 ⊆ ℕ0 ) → 𝑥𝑍 dom ( 𝑅𝑟 𝑥 ) ⊆ ( dom 𝑅 ∪ ran 𝑅 ) )
171 102 adantr ( ( 𝑅𝑉𝑍 ⊆ ℕ0 ) → ∀ 𝑥 ∈ ℕ0 ran ( 𝑅𝑟 𝑥 ) ⊆ ( dom 𝑅 ∪ ran 𝑅 ) )
172 165 imim1d ( ( 𝑅𝑉𝑍 ⊆ ℕ0 ) → ( ( 𝑥 ∈ ℕ0 → ran ( 𝑅𝑟 𝑥 ) ⊆ ( dom 𝑅 ∪ ran 𝑅 ) ) → ( 𝑥𝑍 → ran ( 𝑅𝑟 𝑥 ) ⊆ ( dom 𝑅 ∪ ran 𝑅 ) ) ) )
173 172 ralimdv2 ( ( 𝑅𝑉𝑍 ⊆ ℕ0 ) → ( ∀ 𝑥 ∈ ℕ0 ran ( 𝑅𝑟 𝑥 ) ⊆ ( dom 𝑅 ∪ ran 𝑅 ) → ∀ 𝑥𝑍 ran ( 𝑅𝑟 𝑥 ) ⊆ ( dom 𝑅 ∪ ran 𝑅 ) ) )
174 171 173 mpd ( ( 𝑅𝑉𝑍 ⊆ ℕ0 ) → ∀ 𝑥𝑍 ran ( 𝑅𝑟 𝑥 ) ⊆ ( dom 𝑅 ∪ ran 𝑅 ) )
175 iunss ( 𝑥𝑍 ran ( 𝑅𝑟 𝑥 ) ⊆ ( dom 𝑅 ∪ ran 𝑅 ) ↔ ∀ 𝑥𝑍 ran ( 𝑅𝑟 𝑥 ) ⊆ ( dom 𝑅 ∪ ran 𝑅 ) )
176 174 175 sylibr ( ( 𝑅𝑉𝑍 ⊆ ℕ0 ) → 𝑥𝑍 ran ( 𝑅𝑟 𝑥 ) ⊆ ( dom 𝑅 ∪ ran 𝑅 ) )
177 170 176 unssd ( ( 𝑅𝑉𝑍 ⊆ ℕ0 ) → ( 𝑥𝑍 dom ( 𝑅𝑟 𝑥 ) ∪ 𝑥𝑍 ran ( 𝑅𝑟 𝑥 ) ) ⊆ ( dom 𝑅 ∪ ran 𝑅 ) )
178 177 3adant3 ( ( 𝑅𝑉𝑍 ⊆ ℕ0 ∧ ( { 0 , 1 } ∩ 𝑍 ) ≠ ∅ ) → ( 𝑥𝑍 dom ( 𝑅𝑟 𝑥 ) ∪ 𝑥𝑍 ran ( 𝑅𝑟 𝑥 ) ) ⊆ ( dom 𝑅 ∪ ran 𝑅 ) )
179 ssequn2 ( ( 𝑥𝑍 dom ( 𝑅𝑟 𝑥 ) ∪ 𝑥𝑍 ran ( 𝑅𝑟 𝑥 ) ) ⊆ ( dom 𝑅 ∪ ran 𝑅 ) ↔ ( ( dom 𝑅 ∪ ran 𝑅 ) ∪ ( 𝑥𝑍 dom ( 𝑅𝑟 𝑥 ) ∪ 𝑥𝑍 ran ( 𝑅𝑟 𝑥 ) ) ) = ( dom 𝑅 ∪ ran 𝑅 ) )
180 178 179 sylib ( ( 𝑅𝑉𝑍 ⊆ ℕ0 ∧ ( { 0 , 1 } ∩ 𝑍 ) ≠ ∅ ) → ( ( dom 𝑅 ∪ ran 𝑅 ) ∪ ( 𝑥𝑍 dom ( 𝑅𝑟 𝑥 ) ∪ 𝑥𝑍 ran ( 𝑅𝑟 𝑥 ) ) ) = ( dom 𝑅 ∪ ran 𝑅 ) )
181 162 180 eqtrd ( ( 𝑅𝑉𝑍 ⊆ ℕ0 ∧ ( { 0 , 1 } ∩ 𝑍 ) ≠ ∅ ) → ( ( ( 𝑥 ∈ ( { 0 } ∩ 𝑍 ) dom ( 𝑅𝑟 𝑥 ) ∪ 𝑥 ∈ ( { 0 } ∩ 𝑍 ) ran ( 𝑅𝑟 𝑥 ) ) ∪ ( 𝑥 ∈ ( { 1 } ∩ 𝑍 ) dom ( 𝑅𝑟 𝑥 ) ∪ 𝑥 ∈ ( { 1 } ∩ 𝑍 ) ran ( 𝑅𝑟 𝑥 ) ) ) ∪ ( 𝑥𝑍 dom ( 𝑅𝑟 𝑥 ) ∪ 𝑥𝑍 ran ( 𝑅𝑟 𝑥 ) ) ) = ( dom 𝑅 ∪ ran 𝑅 ) )
182 35 181 syl5eq ( ( 𝑅𝑉𝑍 ⊆ ℕ0 ∧ ( { 0 , 1 } ∩ 𝑍 ) ≠ ∅ ) → ( dom 𝑥 ∈ ( ( ( { 0 } ∩ 𝑍 ) ∪ ( { 1 } ∩ 𝑍 ) ) ∪ 𝑍 ) ( 𝑅𝑟 𝑥 ) ∪ ran 𝑥 ∈ ( ( ( { 0 } ∩ 𝑍 ) ∪ ( { 1 } ∩ 𝑍 ) ) ∪ 𝑍 ) ( 𝑅𝑟 𝑥 ) ) = ( dom 𝑅 ∪ ran 𝑅 ) )
183 nn0ex 0 ∈ V
184 183 ssex ( 𝑍 ⊆ ℕ0𝑍 ∈ V )
185 incom ( 𝑍 ∩ { 0 } ) = ( { 0 } ∩ 𝑍 )
186 inex1g ( 𝑍 ∈ V → ( 𝑍 ∩ { 0 } ) ∈ V )
187 185 186 eqeltrrid ( 𝑍 ∈ V → ( { 0 } ∩ 𝑍 ) ∈ V )
188 incom ( 𝑍 ∩ { 1 } ) = ( { 1 } ∩ 𝑍 )
189 inex1g ( 𝑍 ∈ V → ( 𝑍 ∩ { 1 } ) ∈ V )
190 188 189 eqeltrrid ( 𝑍 ∈ V → ( { 1 } ∩ 𝑍 ) ∈ V )
191 unexg ( ( ( { 0 } ∩ 𝑍 ) ∈ V ∧ ( { 1 } ∩ 𝑍 ) ∈ V ) → ( ( { 0 } ∩ 𝑍 ) ∪ ( { 1 } ∩ 𝑍 ) ) ∈ V )
192 187 190 191 syl2anc ( 𝑍 ∈ V → ( ( { 0 } ∩ 𝑍 ) ∪ ( { 1 } ∩ 𝑍 ) ) ∈ V )
193 unexg ( ( ( ( { 0 } ∩ 𝑍 ) ∪ ( { 1 } ∩ 𝑍 ) ) ∈ V ∧ 𝑍 ∈ V ) → ( ( ( { 0 } ∩ 𝑍 ) ∪ ( { 1 } ∩ 𝑍 ) ) ∪ 𝑍 ) ∈ V )
194 192 193 mpancom ( 𝑍 ∈ V → ( ( ( { 0 } ∩ 𝑍 ) ∪ ( { 1 } ∩ 𝑍 ) ) ∪ 𝑍 ) ∈ V )
195 ovex ( 𝑅𝑟 𝑥 ) ∈ V
196 195 rgenw 𝑥 ∈ ( ( ( { 0 } ∩ 𝑍 ) ∪ ( { 1 } ∩ 𝑍 ) ) ∪ 𝑍 ) ( 𝑅𝑟 𝑥 ) ∈ V
197 iunexg ( ( ( ( ( { 0 } ∩ 𝑍 ) ∪ ( { 1 } ∩ 𝑍 ) ) ∪ 𝑍 ) ∈ V ∧ ∀ 𝑥 ∈ ( ( ( { 0 } ∩ 𝑍 ) ∪ ( { 1 } ∩ 𝑍 ) ) ∪ 𝑍 ) ( 𝑅𝑟 𝑥 ) ∈ V ) → 𝑥 ∈ ( ( ( { 0 } ∩ 𝑍 ) ∪ ( { 1 } ∩ 𝑍 ) ) ∪ 𝑍 ) ( 𝑅𝑟 𝑥 ) ∈ V )
198 194 196 197 sylancl ( 𝑍 ∈ V → 𝑥 ∈ ( ( ( { 0 } ∩ 𝑍 ) ∪ ( { 1 } ∩ 𝑍 ) ) ∪ 𝑍 ) ( 𝑅𝑟 𝑥 ) ∈ V )
199 184 198 syl ( 𝑍 ⊆ ℕ0 𝑥 ∈ ( ( ( { 0 } ∩ 𝑍 ) ∪ ( { 1 } ∩ 𝑍 ) ) ∪ 𝑍 ) ( 𝑅𝑟 𝑥 ) ∈ V )
200 199 3ad2ant2 ( ( 𝑅𝑉𝑍 ⊆ ℕ0 ∧ ( { 0 , 1 } ∩ 𝑍 ) ≠ ∅ ) → 𝑥 ∈ ( ( ( { 0 } ∩ 𝑍 ) ∪ ( { 1 } ∩ 𝑍 ) ) ∪ 𝑍 ) ( 𝑅𝑟 𝑥 ) ∈ V )
201 simp1 ( ( 𝑅𝑉𝑍 ⊆ ℕ0 ∧ ( { 0 , 1 } ∩ 𝑍 ) ≠ ∅ ) → 𝑅𝑉 )
202 relexp0eq ( ( 𝑥 ∈ ( ( ( { 0 } ∩ 𝑍 ) ∪ ( { 1 } ∩ 𝑍 ) ) ∪ 𝑍 ) ( 𝑅𝑟 𝑥 ) ∈ V ∧ 𝑅𝑉 ) → ( ( dom 𝑥 ∈ ( ( ( { 0 } ∩ 𝑍 ) ∪ ( { 1 } ∩ 𝑍 ) ) ∪ 𝑍 ) ( 𝑅𝑟 𝑥 ) ∪ ran 𝑥 ∈ ( ( ( { 0 } ∩ 𝑍 ) ∪ ( { 1 } ∩ 𝑍 ) ) ∪ 𝑍 ) ( 𝑅𝑟 𝑥 ) ) = ( dom 𝑅 ∪ ran 𝑅 ) ↔ ( 𝑥 ∈ ( ( ( { 0 } ∩ 𝑍 ) ∪ ( { 1 } ∩ 𝑍 ) ) ∪ 𝑍 ) ( 𝑅𝑟 𝑥 ) ↑𝑟 0 ) = ( 𝑅𝑟 0 ) ) )
203 200 201 202 syl2anc ( ( 𝑅𝑉𝑍 ⊆ ℕ0 ∧ ( { 0 , 1 } ∩ 𝑍 ) ≠ ∅ ) → ( ( dom 𝑥 ∈ ( ( ( { 0 } ∩ 𝑍 ) ∪ ( { 1 } ∩ 𝑍 ) ) ∪ 𝑍 ) ( 𝑅𝑟 𝑥 ) ∪ ran 𝑥 ∈ ( ( ( { 0 } ∩ 𝑍 ) ∪ ( { 1 } ∩ 𝑍 ) ) ∪ 𝑍 ) ( 𝑅𝑟 𝑥 ) ) = ( dom 𝑅 ∪ ran 𝑅 ) ↔ ( 𝑥 ∈ ( ( ( { 0 } ∩ 𝑍 ) ∪ ( { 1 } ∩ 𝑍 ) ) ∪ 𝑍 ) ( 𝑅𝑟 𝑥 ) ↑𝑟 0 ) = ( 𝑅𝑟 0 ) ) )
204 182 203 mpbid ( ( 𝑅𝑉𝑍 ⊆ ℕ0 ∧ ( { 0 , 1 } ∩ 𝑍 ) ≠ ∅ ) → ( 𝑥 ∈ ( ( ( { 0 } ∩ 𝑍 ) ∪ ( { 1 } ∩ 𝑍 ) ) ∪ 𝑍 ) ( 𝑅𝑟 𝑥 ) ↑𝑟 0 ) = ( 𝑅𝑟 0 ) )
205 12 204 syl5eq ( ( 𝑅𝑉𝑍 ⊆ ℕ0 ∧ ( { 0 , 1 } ∩ 𝑍 ) ≠ ∅ ) → ( 𝑥𝑍 ( 𝑅𝑟 𝑥 ) ↑𝑟 0 ) = ( 𝑅𝑟 0 ) )