Database  
				ZF (ZERMELO-FRAENKEL) SET THEORY  
				ZF Set Theory - add the Axiom of Power Sets  
				Functions  
				fvco  
			 
				
		 
		 Metamath Proof Explorer 
		
			
		 
		 
		
		Description:   Value of a function composition.  Similar to Exercise 5 of TakeutiZaring 
     p. 28.  (Contributed by NM , 22-Apr-2006)   (Proof shortened by Mario
     Carneiro , 26-Dec-2014) 
		
			
				
					 
					 
					Ref 
					Expression 
				 
				
					 
					Assertion 
					fvco  
					   ⊢    Fun  ⁡  G    ∧   A  ∈   dom  ⁡  G         →     F  ∘  G     ⁡  A     =   F  ⁡   G  ⁡  A               
				 
			
		 
		 
			
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1  
							
								
							 
							funfn  
							    ⊢   Fun  ⁡  G    ↔   G  Fn   dom  ⁡  G           
						 
						
							2  
							
								
							 
							fvco2  
							    ⊢    G  Fn   dom  ⁡  G      ∧   A  ∈   dom  ⁡  G         →     F  ∘  G     ⁡  A     =   F  ⁡   G  ⁡  A               
						 
						
							3  
							
								1  2 
							 
							sylanb  
							    ⊢    Fun  ⁡  G    ∧   A  ∈   dom  ⁡  G         →     F  ∘  G     ⁡  A     =   F  ⁡   G  ⁡  A