Step |
Hyp |
Ref |
Expression |
1 |
|
dmcoss |
⊢ dom ( 𝐴 ∘ 𝐵 ) ⊆ dom 𝐵 |
2 |
1
|
a1i |
⊢ ( ran 𝐵 ⊆ dom 𝐴 → dom ( 𝐴 ∘ 𝐵 ) ⊆ dom 𝐵 ) |
3 |
|
ssel |
⊢ ( ran 𝐵 ⊆ dom 𝐴 → ( 𝑦 ∈ ran 𝐵 → 𝑦 ∈ dom 𝐴 ) ) |
4 |
|
vex |
⊢ 𝑦 ∈ V |
5 |
4
|
elrn |
⊢ ( 𝑦 ∈ ran 𝐵 ↔ ∃ 𝑥 𝑥 𝐵 𝑦 ) |
6 |
4
|
eldm |
⊢ ( 𝑦 ∈ dom 𝐴 ↔ ∃ 𝑧 𝑦 𝐴 𝑧 ) |
7 |
5 6
|
imbi12i |
⊢ ( ( 𝑦 ∈ ran 𝐵 → 𝑦 ∈ dom 𝐴 ) ↔ ( ∃ 𝑥 𝑥 𝐵 𝑦 → ∃ 𝑧 𝑦 𝐴 𝑧 ) ) |
8 |
|
19.8a |
⊢ ( 𝑥 𝐵 𝑦 → ∃ 𝑥 𝑥 𝐵 𝑦 ) |
9 |
8
|
imim1i |
⊢ ( ( ∃ 𝑥 𝑥 𝐵 𝑦 → ∃ 𝑧 𝑦 𝐴 𝑧 ) → ( 𝑥 𝐵 𝑦 → ∃ 𝑧 𝑦 𝐴 𝑧 ) ) |
10 |
|
pm3.2 |
⊢ ( 𝑥 𝐵 𝑦 → ( 𝑦 𝐴 𝑧 → ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) ) ) |
11 |
10
|
eximdv |
⊢ ( 𝑥 𝐵 𝑦 → ( ∃ 𝑧 𝑦 𝐴 𝑧 → ∃ 𝑧 ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) ) ) |
12 |
9 11
|
sylcom |
⊢ ( ( ∃ 𝑥 𝑥 𝐵 𝑦 → ∃ 𝑧 𝑦 𝐴 𝑧 ) → ( 𝑥 𝐵 𝑦 → ∃ 𝑧 ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) ) ) |
13 |
7 12
|
sylbi |
⊢ ( ( 𝑦 ∈ ran 𝐵 → 𝑦 ∈ dom 𝐴 ) → ( 𝑥 𝐵 𝑦 → ∃ 𝑧 ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) ) ) |
14 |
3 13
|
syl |
⊢ ( ran 𝐵 ⊆ dom 𝐴 → ( 𝑥 𝐵 𝑦 → ∃ 𝑧 ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) ) ) |
15 |
14
|
eximdv |
⊢ ( ran 𝐵 ⊆ dom 𝐴 → ( ∃ 𝑦 𝑥 𝐵 𝑦 → ∃ 𝑦 ∃ 𝑧 ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) ) ) |
16 |
|
excom |
⊢ ( ∃ 𝑧 ∃ 𝑦 ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) ↔ ∃ 𝑦 ∃ 𝑧 ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) ) |
17 |
15 16
|
syl6ibr |
⊢ ( ran 𝐵 ⊆ dom 𝐴 → ( ∃ 𝑦 𝑥 𝐵 𝑦 → ∃ 𝑧 ∃ 𝑦 ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) ) ) |
18 |
|
vex |
⊢ 𝑥 ∈ V |
19 |
|
vex |
⊢ 𝑧 ∈ V |
20 |
18 19
|
opelco |
⊢ ( 〈 𝑥 , 𝑧 〉 ∈ ( 𝐴 ∘ 𝐵 ) ↔ ∃ 𝑦 ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) ) |
21 |
20
|
exbii |
⊢ ( ∃ 𝑧 〈 𝑥 , 𝑧 〉 ∈ ( 𝐴 ∘ 𝐵 ) ↔ ∃ 𝑧 ∃ 𝑦 ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) ) |
22 |
17 21
|
syl6ibr |
⊢ ( ran 𝐵 ⊆ dom 𝐴 → ( ∃ 𝑦 𝑥 𝐵 𝑦 → ∃ 𝑧 〈 𝑥 , 𝑧 〉 ∈ ( 𝐴 ∘ 𝐵 ) ) ) |
23 |
18
|
eldm |
⊢ ( 𝑥 ∈ dom 𝐵 ↔ ∃ 𝑦 𝑥 𝐵 𝑦 ) |
24 |
18
|
eldm2 |
⊢ ( 𝑥 ∈ dom ( 𝐴 ∘ 𝐵 ) ↔ ∃ 𝑧 〈 𝑥 , 𝑧 〉 ∈ ( 𝐴 ∘ 𝐵 ) ) |
25 |
22 23 24
|
3imtr4g |
⊢ ( ran 𝐵 ⊆ dom 𝐴 → ( 𝑥 ∈ dom 𝐵 → 𝑥 ∈ dom ( 𝐴 ∘ 𝐵 ) ) ) |
26 |
25
|
ssrdv |
⊢ ( ran 𝐵 ⊆ dom 𝐴 → dom 𝐵 ⊆ dom ( 𝐴 ∘ 𝐵 ) ) |
27 |
2 26
|
eqssd |
⊢ ( ran 𝐵 ⊆ dom 𝐴 → dom ( 𝐴 ∘ 𝐵 ) = dom 𝐵 ) |