| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-trcl |
⊢ t+ = ( 𝑟 ∈ V ↦ ∩ { 𝑧 ∣ ( 𝑟 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } ) |
| 2 |
|
relexp1g |
⊢ ( 𝑟 ∈ V → ( 𝑟 ↑𝑟 1 ) = 𝑟 ) |
| 3 |
|
nnex |
⊢ ℕ ∈ V |
| 4 |
|
1nn |
⊢ 1 ∈ ℕ |
| 5 |
|
oveq1 |
⊢ ( 𝑎 = 𝑡 → ( 𝑎 ↑𝑟 𝑛 ) = ( 𝑡 ↑𝑟 𝑛 ) ) |
| 6 |
5
|
iuneq2d |
⊢ ( 𝑎 = 𝑡 → ∪ 𝑛 ∈ ℕ ( 𝑎 ↑𝑟 𝑛 ) = ∪ 𝑛 ∈ ℕ ( 𝑡 ↑𝑟 𝑛 ) ) |
| 7 |
|
oveq2 |
⊢ ( 𝑛 = 𝑘 → ( 𝑡 ↑𝑟 𝑛 ) = ( 𝑡 ↑𝑟 𝑘 ) ) |
| 8 |
7
|
cbviunv |
⊢ ∪ 𝑛 ∈ ℕ ( 𝑡 ↑𝑟 𝑛 ) = ∪ 𝑘 ∈ ℕ ( 𝑡 ↑𝑟 𝑘 ) |
| 9 |
6 8
|
eqtrdi |
⊢ ( 𝑎 = 𝑡 → ∪ 𝑛 ∈ ℕ ( 𝑎 ↑𝑟 𝑛 ) = ∪ 𝑘 ∈ ℕ ( 𝑡 ↑𝑟 𝑘 ) ) |
| 10 |
9
|
cbvmptv |
⊢ ( 𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ ( 𝑎 ↑𝑟 𝑛 ) ) = ( 𝑡 ∈ V ↦ ∪ 𝑘 ∈ ℕ ( 𝑡 ↑𝑟 𝑘 ) ) |
| 11 |
10
|
ov2ssiunov2 |
⊢ ( ( 𝑟 ∈ V ∧ ℕ ∈ V ∧ 1 ∈ ℕ ) → ( 𝑟 ↑𝑟 1 ) ⊆ ( ( 𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ ( 𝑎 ↑𝑟 𝑛 ) ) ‘ 𝑟 ) ) |
| 12 |
3 4 11
|
mp3an23 |
⊢ ( 𝑟 ∈ V → ( 𝑟 ↑𝑟 1 ) ⊆ ( ( 𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ ( 𝑎 ↑𝑟 𝑛 ) ) ‘ 𝑟 ) ) |
| 13 |
2 12
|
eqsstrrd |
⊢ ( 𝑟 ∈ V → 𝑟 ⊆ ( ( 𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ ( 𝑎 ↑𝑟 𝑛 ) ) ‘ 𝑟 ) ) |
| 14 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 15 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
| 16 |
10
|
iunrelexpuztr |
⊢ ( ( 𝑟 ∈ V ∧ ℕ = ( ℤ≥ ‘ 1 ) ∧ 1 ∈ ℕ0 ) → ( ( ( 𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ ( 𝑎 ↑𝑟 𝑛 ) ) ‘ 𝑟 ) ∘ ( ( 𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ ( 𝑎 ↑𝑟 𝑛 ) ) ‘ 𝑟 ) ) ⊆ ( ( 𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ ( 𝑎 ↑𝑟 𝑛 ) ) ‘ 𝑟 ) ) |
| 17 |
14 15 16
|
mp3an23 |
⊢ ( 𝑟 ∈ V → ( ( ( 𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ ( 𝑎 ↑𝑟 𝑛 ) ) ‘ 𝑟 ) ∘ ( ( 𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ ( 𝑎 ↑𝑟 𝑛 ) ) ‘ 𝑟 ) ) ⊆ ( ( 𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ ( 𝑎 ↑𝑟 𝑛 ) ) ‘ 𝑟 ) ) |
| 18 |
|
fvex |
⊢ ( ( 𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ ( 𝑎 ↑𝑟 𝑛 ) ) ‘ 𝑟 ) ∈ V |
| 19 |
|
trcleq2lem |
⊢ ( 𝑧 = ( ( 𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ ( 𝑎 ↑𝑟 𝑛 ) ) ‘ 𝑟 ) → ( ( 𝑟 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) ↔ ( 𝑟 ⊆ ( ( 𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ ( 𝑎 ↑𝑟 𝑛 ) ) ‘ 𝑟 ) ∧ ( ( ( 𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ ( 𝑎 ↑𝑟 𝑛 ) ) ‘ 𝑟 ) ∘ ( ( 𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ ( 𝑎 ↑𝑟 𝑛 ) ) ‘ 𝑟 ) ) ⊆ ( ( 𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ ( 𝑎 ↑𝑟 𝑛 ) ) ‘ 𝑟 ) ) ) ) |
| 20 |
19
|
a1i |
⊢ ( 𝑟 ∈ V → ( 𝑧 = ( ( 𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ ( 𝑎 ↑𝑟 𝑛 ) ) ‘ 𝑟 ) → ( ( 𝑟 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) ↔ ( 𝑟 ⊆ ( ( 𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ ( 𝑎 ↑𝑟 𝑛 ) ) ‘ 𝑟 ) ∧ ( ( ( 𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ ( 𝑎 ↑𝑟 𝑛 ) ) ‘ 𝑟 ) ∘ ( ( 𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ ( 𝑎 ↑𝑟 𝑛 ) ) ‘ 𝑟 ) ) ⊆ ( ( 𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ ( 𝑎 ↑𝑟 𝑛 ) ) ‘ 𝑟 ) ) ) ) ) |
| 21 |
20
|
alrimiv |
⊢ ( 𝑟 ∈ V → ∀ 𝑧 ( 𝑧 = ( ( 𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ ( 𝑎 ↑𝑟 𝑛 ) ) ‘ 𝑟 ) → ( ( 𝑟 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) ↔ ( 𝑟 ⊆ ( ( 𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ ( 𝑎 ↑𝑟 𝑛 ) ) ‘ 𝑟 ) ∧ ( ( ( 𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ ( 𝑎 ↑𝑟 𝑛 ) ) ‘ 𝑟 ) ∘ ( ( 𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ ( 𝑎 ↑𝑟 𝑛 ) ) ‘ 𝑟 ) ) ⊆ ( ( 𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ ( 𝑎 ↑𝑟 𝑛 ) ) ‘ 𝑟 ) ) ) ) ) |
| 22 |
|
elabgt |
⊢ ( ( ( ( 𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ ( 𝑎 ↑𝑟 𝑛 ) ) ‘ 𝑟 ) ∈ V ∧ ∀ 𝑧 ( 𝑧 = ( ( 𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ ( 𝑎 ↑𝑟 𝑛 ) ) ‘ 𝑟 ) → ( ( 𝑟 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) ↔ ( 𝑟 ⊆ ( ( 𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ ( 𝑎 ↑𝑟 𝑛 ) ) ‘ 𝑟 ) ∧ ( ( ( 𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ ( 𝑎 ↑𝑟 𝑛 ) ) ‘ 𝑟 ) ∘ ( ( 𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ ( 𝑎 ↑𝑟 𝑛 ) ) ‘ 𝑟 ) ) ⊆ ( ( 𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ ( 𝑎 ↑𝑟 𝑛 ) ) ‘ 𝑟 ) ) ) ) ) → ( ( ( 𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ ( 𝑎 ↑𝑟 𝑛 ) ) ‘ 𝑟 ) ∈ { 𝑧 ∣ ( 𝑟 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } ↔ ( 𝑟 ⊆ ( ( 𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ ( 𝑎 ↑𝑟 𝑛 ) ) ‘ 𝑟 ) ∧ ( ( ( 𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ ( 𝑎 ↑𝑟 𝑛 ) ) ‘ 𝑟 ) ∘ ( ( 𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ ( 𝑎 ↑𝑟 𝑛 ) ) ‘ 𝑟 ) ) ⊆ ( ( 𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ ( 𝑎 ↑𝑟 𝑛 ) ) ‘ 𝑟 ) ) ) ) |
| 23 |
18 21 22
|
sylancr |
⊢ ( 𝑟 ∈ V → ( ( ( 𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ ( 𝑎 ↑𝑟 𝑛 ) ) ‘ 𝑟 ) ∈ { 𝑧 ∣ ( 𝑟 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } ↔ ( 𝑟 ⊆ ( ( 𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ ( 𝑎 ↑𝑟 𝑛 ) ) ‘ 𝑟 ) ∧ ( ( ( 𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ ( 𝑎 ↑𝑟 𝑛 ) ) ‘ 𝑟 ) ∘ ( ( 𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ ( 𝑎 ↑𝑟 𝑛 ) ) ‘ 𝑟 ) ) ⊆ ( ( 𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ ( 𝑎 ↑𝑟 𝑛 ) ) ‘ 𝑟 ) ) ) ) |
| 24 |
13 17 23
|
mpbir2and |
⊢ ( 𝑟 ∈ V → ( ( 𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ ( 𝑎 ↑𝑟 𝑛 ) ) ‘ 𝑟 ) ∈ { 𝑧 ∣ ( 𝑟 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } ) |
| 25 |
|
intss1 |
⊢ ( ( ( 𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ ( 𝑎 ↑𝑟 𝑛 ) ) ‘ 𝑟 ) ∈ { 𝑧 ∣ ( 𝑟 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } → ∩ { 𝑧 ∣ ( 𝑟 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } ⊆ ( ( 𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ ( 𝑎 ↑𝑟 𝑛 ) ) ‘ 𝑟 ) ) |
| 26 |
24 25
|
syl |
⊢ ( 𝑟 ∈ V → ∩ { 𝑧 ∣ ( 𝑟 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } ⊆ ( ( 𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ ( 𝑎 ↑𝑟 𝑛 ) ) ‘ 𝑟 ) ) |
| 27 |
|
vex |
⊢ 𝑠 ∈ V |
| 28 |
|
trcleq2lem |
⊢ ( 𝑧 = 𝑠 → ( ( 𝑟 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) ↔ ( 𝑟 ⊆ 𝑠 ∧ ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ) ) ) |
| 29 |
27 28
|
elab |
⊢ ( 𝑠 ∈ { 𝑧 ∣ ( 𝑟 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } ↔ ( 𝑟 ⊆ 𝑠 ∧ ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ) ) |
| 30 |
|
eqid |
⊢ ℕ = ℕ |
| 31 |
10
|
iunrelexpmin1 |
⊢ ( ( 𝑟 ∈ V ∧ ℕ = ℕ ) → ∀ 𝑠 ( ( 𝑟 ⊆ 𝑠 ∧ ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ) → ( ( 𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ ( 𝑎 ↑𝑟 𝑛 ) ) ‘ 𝑟 ) ⊆ 𝑠 ) ) |
| 32 |
30 31
|
mpan2 |
⊢ ( 𝑟 ∈ V → ∀ 𝑠 ( ( 𝑟 ⊆ 𝑠 ∧ ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ) → ( ( 𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ ( 𝑎 ↑𝑟 𝑛 ) ) ‘ 𝑟 ) ⊆ 𝑠 ) ) |
| 33 |
32
|
19.21bi |
⊢ ( 𝑟 ∈ V → ( ( 𝑟 ⊆ 𝑠 ∧ ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ) → ( ( 𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ ( 𝑎 ↑𝑟 𝑛 ) ) ‘ 𝑟 ) ⊆ 𝑠 ) ) |
| 34 |
29 33
|
biimtrid |
⊢ ( 𝑟 ∈ V → ( 𝑠 ∈ { 𝑧 ∣ ( 𝑟 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } → ( ( 𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ ( 𝑎 ↑𝑟 𝑛 ) ) ‘ 𝑟 ) ⊆ 𝑠 ) ) |
| 35 |
34
|
ralrimiv |
⊢ ( 𝑟 ∈ V → ∀ 𝑠 ∈ { 𝑧 ∣ ( 𝑟 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } ( ( 𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ ( 𝑎 ↑𝑟 𝑛 ) ) ‘ 𝑟 ) ⊆ 𝑠 ) |
| 36 |
|
ssint |
⊢ ( ( ( 𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ ( 𝑎 ↑𝑟 𝑛 ) ) ‘ 𝑟 ) ⊆ ∩ { 𝑧 ∣ ( 𝑟 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } ↔ ∀ 𝑠 ∈ { 𝑧 ∣ ( 𝑟 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } ( ( 𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ ( 𝑎 ↑𝑟 𝑛 ) ) ‘ 𝑟 ) ⊆ 𝑠 ) |
| 37 |
35 36
|
sylibr |
⊢ ( 𝑟 ∈ V → ( ( 𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ ( 𝑎 ↑𝑟 𝑛 ) ) ‘ 𝑟 ) ⊆ ∩ { 𝑧 ∣ ( 𝑟 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } ) |
| 38 |
26 37
|
eqssd |
⊢ ( 𝑟 ∈ V → ∩ { 𝑧 ∣ ( 𝑟 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } = ( ( 𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ ( 𝑎 ↑𝑟 𝑛 ) ) ‘ 𝑟 ) ) |
| 39 |
|
oveq1 |
⊢ ( 𝑎 = 𝑟 → ( 𝑎 ↑𝑟 𝑛 ) = ( 𝑟 ↑𝑟 𝑛 ) ) |
| 40 |
39
|
iuneq2d |
⊢ ( 𝑎 = 𝑟 → ∪ 𝑛 ∈ ℕ ( 𝑎 ↑𝑟 𝑛 ) = ∪ 𝑛 ∈ ℕ ( 𝑟 ↑𝑟 𝑛 ) ) |
| 41 |
|
eqid |
⊢ ( 𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ ( 𝑎 ↑𝑟 𝑛 ) ) = ( 𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ ( 𝑎 ↑𝑟 𝑛 ) ) |
| 42 |
|
ovex |
⊢ ( 𝑟 ↑𝑟 𝑛 ) ∈ V |
| 43 |
3 42
|
iunex |
⊢ ∪ 𝑛 ∈ ℕ ( 𝑟 ↑𝑟 𝑛 ) ∈ V |
| 44 |
40 41 43
|
fvmpt |
⊢ ( 𝑟 ∈ V → ( ( 𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ ( 𝑎 ↑𝑟 𝑛 ) ) ‘ 𝑟 ) = ∪ 𝑛 ∈ ℕ ( 𝑟 ↑𝑟 𝑛 ) ) |
| 45 |
38 44
|
eqtrd |
⊢ ( 𝑟 ∈ V → ∩ { 𝑧 ∣ ( 𝑟 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } = ∪ 𝑛 ∈ ℕ ( 𝑟 ↑𝑟 𝑛 ) ) |
| 46 |
45
|
mpteq2ia |
⊢ ( 𝑟 ∈ V ↦ ∩ { 𝑧 ∣ ( 𝑟 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } ) = ( 𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ ( 𝑟 ↑𝑟 𝑛 ) ) |
| 47 |
1 46
|
eqtri |
⊢ t+ = ( 𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ ( 𝑟 ↑𝑟 𝑛 ) ) |