Metamath Proof Explorer


Theorem coiun1

Description: Composition with an indexed union. Proof analgous to that of coiun . (Contributed by RP, 20-Jun-2020)

Ref Expression
Assertion coiun1 ( 𝑥𝐶 𝐴𝐵 ) = 𝑥𝐶 ( 𝐴𝐵 )

Proof

Step Hyp Ref Expression
1 relco Rel ( 𝑥𝐶 𝐴𝐵 )
2 reliun ( Rel 𝑥𝐶 ( 𝐴𝐵 ) ↔ ∀ 𝑥𝐶 Rel ( 𝐴𝐵 ) )
3 relco Rel ( 𝐴𝐵 )
4 3 a1i ( 𝑥𝐶 → Rel ( 𝐴𝐵 ) )
5 2 4 mprgbir Rel 𝑥𝐶 ( 𝐴𝐵 )
6 eliun ( ⟨ 𝑤 , 𝑧 ⟩ ∈ 𝑥𝐶 𝐴 ↔ ∃ 𝑥𝐶𝑤 , 𝑧 ⟩ ∈ 𝐴 )
7 df-br ( 𝑤 𝑥𝐶 𝐴 𝑧 ↔ ⟨ 𝑤 , 𝑧 ⟩ ∈ 𝑥𝐶 𝐴 )
8 df-br ( 𝑤 𝐴 𝑧 ↔ ⟨ 𝑤 , 𝑧 ⟩ ∈ 𝐴 )
9 8 rexbii ( ∃ 𝑥𝐶 𝑤 𝐴 𝑧 ↔ ∃ 𝑥𝐶𝑤 , 𝑧 ⟩ ∈ 𝐴 )
10 6 7 9 3bitr4i ( 𝑤 𝑥𝐶 𝐴 𝑧 ↔ ∃ 𝑥𝐶 𝑤 𝐴 𝑧 )
11 10 anbi2i ( ( 𝑦 𝐵 𝑤𝑤 𝑥𝐶 𝐴 𝑧 ) ↔ ( 𝑦 𝐵 𝑤 ∧ ∃ 𝑥𝐶 𝑤 𝐴 𝑧 ) )
12 r19.42v ( ∃ 𝑥𝐶 ( 𝑦 𝐵 𝑤𝑤 𝐴 𝑧 ) ↔ ( 𝑦 𝐵 𝑤 ∧ ∃ 𝑥𝐶 𝑤 𝐴 𝑧 ) )
13 11 12 bitr4i ( ( 𝑦 𝐵 𝑤𝑤 𝑥𝐶 𝐴 𝑧 ) ↔ ∃ 𝑥𝐶 ( 𝑦 𝐵 𝑤𝑤 𝐴 𝑧 ) )
14 13 exbii ( ∃ 𝑤 ( 𝑦 𝐵 𝑤𝑤 𝑥𝐶 𝐴 𝑧 ) ↔ ∃ 𝑤𝑥𝐶 ( 𝑦 𝐵 𝑤𝑤 𝐴 𝑧 ) )
15 rexcom4 ( ∃ 𝑥𝐶𝑤 ( 𝑦 𝐵 𝑤𝑤 𝐴 𝑧 ) ↔ ∃ 𝑤𝑥𝐶 ( 𝑦 𝐵 𝑤𝑤 𝐴 𝑧 ) )
16 14 15 bitr4i ( ∃ 𝑤 ( 𝑦 𝐵 𝑤𝑤 𝑥𝐶 𝐴 𝑧 ) ↔ ∃ 𝑥𝐶𝑤 ( 𝑦 𝐵 𝑤𝑤 𝐴 𝑧 ) )
17 vex 𝑦 ∈ V
18 vex 𝑧 ∈ V
19 17 18 opelco ( ⟨ 𝑦 , 𝑧 ⟩ ∈ ( 𝑥𝐶 𝐴𝐵 ) ↔ ∃ 𝑤 ( 𝑦 𝐵 𝑤𝑤 𝑥𝐶 𝐴 𝑧 ) )
20 eliun ( ⟨ 𝑦 , 𝑧 ⟩ ∈ 𝑥𝐶 ( 𝐴𝐵 ) ↔ ∃ 𝑥𝐶𝑦 , 𝑧 ⟩ ∈ ( 𝐴𝐵 ) )
21 17 18 opelco ( ⟨ 𝑦 , 𝑧 ⟩ ∈ ( 𝐴𝐵 ) ↔ ∃ 𝑤 ( 𝑦 𝐵 𝑤𝑤 𝐴 𝑧 ) )
22 21 rexbii ( ∃ 𝑥𝐶𝑦 , 𝑧 ⟩ ∈ ( 𝐴𝐵 ) ↔ ∃ 𝑥𝐶𝑤 ( 𝑦 𝐵 𝑤𝑤 𝐴 𝑧 ) )
23 20 22 bitri ( ⟨ 𝑦 , 𝑧 ⟩ ∈ 𝑥𝐶 ( 𝐴𝐵 ) ↔ ∃ 𝑥𝐶𝑤 ( 𝑦 𝐵 𝑤𝑤 𝐴 𝑧 ) )
24 16 19 23 3bitr4i ( ⟨ 𝑦 , 𝑧 ⟩ ∈ ( 𝑥𝐶 𝐴𝐵 ) ↔ ⟨ 𝑦 , 𝑧 ⟩ ∈ 𝑥𝐶 ( 𝐴𝐵 ) )
25 1 5 24 eqrelriiv ( 𝑥𝐶 𝐴𝐵 ) = 𝑥𝐶 ( 𝐴𝐵 )