Step |
Hyp |
Ref |
Expression |
1 |
|
elnn0 |
⊢ ( 𝑀 ∈ ℕ0 ↔ ( 𝑀 ∈ ℕ ∨ 𝑀 = 0 ) ) |
2 |
|
elnn0 |
⊢ ( 𝑁 ∈ ℕ0 ↔ ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ) |
3 |
2
|
biimpi |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ) |
4 |
|
relexpaddnn |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ) → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) = ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) |
5 |
|
eqimss |
⊢ ( ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) = ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) ⊆ ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) |
6 |
4 5
|
syl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ) → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) ⊆ ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) |
7 |
6
|
3exp |
⊢ ( 𝑁 ∈ ℕ → ( 𝑀 ∈ ℕ → ( 𝑅 ∈ 𝑉 → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) ⊆ ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) ) ) |
8 |
|
elnn1uz2 |
⊢ ( 𝑀 ∈ ℕ ↔ ( 𝑀 = 1 ∨ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ) ) |
9 |
|
relco |
⊢ Rel ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ∘ 𝑅 ) |
10 |
|
dfrel2 |
⊢ ( Rel ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ∘ 𝑅 ) ↔ ◡ ◡ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ∘ 𝑅 ) = ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ∘ 𝑅 ) ) |
11 |
10
|
biimpi |
⊢ ( Rel ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ∘ 𝑅 ) → ◡ ◡ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ∘ 𝑅 ) = ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ∘ 𝑅 ) ) |
12 |
9 11
|
ax-mp |
⊢ ◡ ◡ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ∘ 𝑅 ) = ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ∘ 𝑅 ) |
13 |
|
cnvco |
⊢ ◡ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ∘ 𝑅 ) = ( ◡ 𝑅 ∘ ◡ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) |
14 |
|
cnvresid |
⊢ ◡ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) = ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) |
15 |
14
|
coeq2i |
⊢ ( ◡ 𝑅 ∘ ◡ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) = ( ◡ 𝑅 ∘ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) |
16 |
|
coires1 |
⊢ ( ◡ 𝑅 ∘ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) = ( ◡ 𝑅 ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) |
17 |
13 15 16
|
3eqtri |
⊢ ◡ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ∘ 𝑅 ) = ( ◡ 𝑅 ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) |
18 |
|
eqimss |
⊢ ( ◡ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ∘ 𝑅 ) = ( ◡ 𝑅 ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) → ◡ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ∘ 𝑅 ) ⊆ ( ◡ 𝑅 ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) |
19 |
17 18
|
ax-mp |
⊢ ◡ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ∘ 𝑅 ) ⊆ ( ◡ 𝑅 ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) |
20 |
|
cnvss |
⊢ ( ◡ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ∘ 𝑅 ) ⊆ ( ◡ 𝑅 ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) → ◡ ◡ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ∘ 𝑅 ) ⊆ ◡ ( ◡ 𝑅 ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) |
21 |
19 20
|
ax-mp |
⊢ ◡ ◡ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ∘ 𝑅 ) ⊆ ◡ ( ◡ 𝑅 ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) |
22 |
|
resss |
⊢ ( ◡ 𝑅 ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ ◡ 𝑅 |
23 |
|
cnvss |
⊢ ( ( ◡ 𝑅 ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ ◡ 𝑅 → ◡ ( ◡ 𝑅 ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ ◡ ◡ 𝑅 ) |
24 |
22 23
|
ax-mp |
⊢ ◡ ( ◡ 𝑅 ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ ◡ ◡ 𝑅 |
25 |
21 24
|
sstri |
⊢ ◡ ◡ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ∘ 𝑅 ) ⊆ ◡ ◡ 𝑅 |
26 |
12 25
|
eqsstrri |
⊢ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ∘ 𝑅 ) ⊆ ◡ ◡ 𝑅 |
27 |
|
cnvcnvss |
⊢ ◡ ◡ 𝑅 ⊆ 𝑅 |
28 |
26 27
|
sstri |
⊢ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ∘ 𝑅 ) ⊆ 𝑅 |
29 |
28
|
a1i |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 = 1 ∧ 𝑅 ∈ 𝑉 ) → ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ∘ 𝑅 ) ⊆ 𝑅 ) |
30 |
|
simp1 |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 = 1 ∧ 𝑅 ∈ 𝑉 ) → 𝑁 = 0 ) |
31 |
30
|
oveq2d |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 = 1 ∧ 𝑅 ∈ 𝑉 ) → ( 𝑅 ↑𝑟 𝑁 ) = ( 𝑅 ↑𝑟 0 ) ) |
32 |
|
relexp0g |
⊢ ( 𝑅 ∈ 𝑉 → ( 𝑅 ↑𝑟 0 ) = ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) |
33 |
32
|
3ad2ant3 |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 = 1 ∧ 𝑅 ∈ 𝑉 ) → ( 𝑅 ↑𝑟 0 ) = ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) |
34 |
31 33
|
eqtrd |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 = 1 ∧ 𝑅 ∈ 𝑉 ) → ( 𝑅 ↑𝑟 𝑁 ) = ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) |
35 |
|
simp2 |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 = 1 ∧ 𝑅 ∈ 𝑉 ) → 𝑀 = 1 ) |
36 |
35
|
oveq2d |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 = 1 ∧ 𝑅 ∈ 𝑉 ) → ( 𝑅 ↑𝑟 𝑀 ) = ( 𝑅 ↑𝑟 1 ) ) |
37 |
|
relexp1g |
⊢ ( 𝑅 ∈ 𝑉 → ( 𝑅 ↑𝑟 1 ) = 𝑅 ) |
38 |
37
|
3ad2ant3 |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 = 1 ∧ 𝑅 ∈ 𝑉 ) → ( 𝑅 ↑𝑟 1 ) = 𝑅 ) |
39 |
36 38
|
eqtrd |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 = 1 ∧ 𝑅 ∈ 𝑉 ) → ( 𝑅 ↑𝑟 𝑀 ) = 𝑅 ) |
40 |
34 39
|
coeq12d |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 = 1 ∧ 𝑅 ∈ 𝑉 ) → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) = ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ∘ 𝑅 ) ) |
41 |
30 35
|
oveq12d |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 = 1 ∧ 𝑅 ∈ 𝑉 ) → ( 𝑁 + 𝑀 ) = ( 0 + 1 ) ) |
42 |
|
1cnd |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 = 1 ∧ 𝑅 ∈ 𝑉 ) → 1 ∈ ℂ ) |
43 |
42
|
addid2d |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 = 1 ∧ 𝑅 ∈ 𝑉 ) → ( 0 + 1 ) = 1 ) |
44 |
41 43
|
eqtrd |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 = 1 ∧ 𝑅 ∈ 𝑉 ) → ( 𝑁 + 𝑀 ) = 1 ) |
45 |
44
|
oveq2d |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 = 1 ∧ 𝑅 ∈ 𝑉 ) → ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) = ( 𝑅 ↑𝑟 1 ) ) |
46 |
45 38
|
eqtrd |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 = 1 ∧ 𝑅 ∈ 𝑉 ) → ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) = 𝑅 ) |
47 |
29 40 46
|
3sstr4d |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 = 1 ∧ 𝑅 ∈ 𝑉 ) → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) ⊆ ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) |
48 |
47
|
3exp |
⊢ ( 𝑁 = 0 → ( 𝑀 = 1 → ( 𝑅 ∈ 𝑉 → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) ⊆ ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) ) ) |
49 |
|
coires1 |
⊢ ( ( ◡ 𝑅 ↑𝑟 𝑀 ) ∘ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) = ( ( ◡ 𝑅 ↑𝑟 𝑀 ) ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) |
50 |
|
simp2 |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑅 ∈ 𝑉 ) → 𝑀 ∈ ( ℤ≥ ‘ 2 ) ) |
51 |
|
cnvexg |
⊢ ( 𝑅 ∈ 𝑉 → ◡ 𝑅 ∈ V ) |
52 |
51
|
3ad2ant3 |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑅 ∈ 𝑉 ) → ◡ 𝑅 ∈ V ) |
53 |
|
relexpuzrel |
⊢ ( ( 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ ◡ 𝑅 ∈ V ) → Rel ( ◡ 𝑅 ↑𝑟 𝑀 ) ) |
54 |
50 52 53
|
syl2anc |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑅 ∈ 𝑉 ) → Rel ( ◡ 𝑅 ↑𝑟 𝑀 ) ) |
55 |
|
eluz2nn |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 2 ) → 𝑀 ∈ ℕ ) |
56 |
50 55
|
syl |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑅 ∈ 𝑉 ) → 𝑀 ∈ ℕ ) |
57 |
|
relexpnndm |
⊢ ( ( 𝑀 ∈ ℕ ∧ ◡ 𝑅 ∈ V ) → dom ( ◡ 𝑅 ↑𝑟 𝑀 ) ⊆ dom ◡ 𝑅 ) |
58 |
56 52 57
|
syl2anc |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑅 ∈ 𝑉 ) → dom ( ◡ 𝑅 ↑𝑟 𝑀 ) ⊆ dom ◡ 𝑅 ) |
59 |
|
df-rn |
⊢ ran 𝑅 = dom ◡ 𝑅 |
60 |
|
ssun2 |
⊢ ran 𝑅 ⊆ ( dom 𝑅 ∪ ran 𝑅 ) |
61 |
59 60
|
eqsstrri |
⊢ dom ◡ 𝑅 ⊆ ( dom 𝑅 ∪ ran 𝑅 ) |
62 |
58 61
|
sstrdi |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑅 ∈ 𝑉 ) → dom ( ◡ 𝑅 ↑𝑟 𝑀 ) ⊆ ( dom 𝑅 ∪ ran 𝑅 ) ) |
63 |
|
relssres |
⊢ ( ( Rel ( ◡ 𝑅 ↑𝑟 𝑀 ) ∧ dom ( ◡ 𝑅 ↑𝑟 𝑀 ) ⊆ ( dom 𝑅 ∪ ran 𝑅 ) ) → ( ( ◡ 𝑅 ↑𝑟 𝑀 ) ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) = ( ◡ 𝑅 ↑𝑟 𝑀 ) ) |
64 |
54 62 63
|
syl2anc |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑅 ∈ 𝑉 ) → ( ( ◡ 𝑅 ↑𝑟 𝑀 ) ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) = ( ◡ 𝑅 ↑𝑟 𝑀 ) ) |
65 |
49 64
|
syl5eq |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑅 ∈ 𝑉 ) → ( ( ◡ 𝑅 ↑𝑟 𝑀 ) ∘ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) = ( ◡ 𝑅 ↑𝑟 𝑀 ) ) |
66 |
|
cnvco |
⊢ ◡ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) = ( ◡ ( 𝑅 ↑𝑟 𝑀 ) ∘ ◡ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) |
67 |
|
eluzge2nn0 |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 2 ) → 𝑀 ∈ ℕ0 ) |
68 |
50 67
|
syl |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑅 ∈ 𝑉 ) → 𝑀 ∈ ℕ0 ) |
69 |
|
simp3 |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑅 ∈ 𝑉 ) → 𝑅 ∈ 𝑉 ) |
70 |
|
relexpcnv |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ) → ◡ ( 𝑅 ↑𝑟 𝑀 ) = ( ◡ 𝑅 ↑𝑟 𝑀 ) ) |
71 |
68 69 70
|
syl2anc |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑅 ∈ 𝑉 ) → ◡ ( 𝑅 ↑𝑟 𝑀 ) = ( ◡ 𝑅 ↑𝑟 𝑀 ) ) |
72 |
14
|
a1i |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑅 ∈ 𝑉 ) → ◡ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) = ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) |
73 |
71 72
|
coeq12d |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑅 ∈ 𝑉 ) → ( ◡ ( 𝑅 ↑𝑟 𝑀 ) ∘ ◡ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) = ( ( ◡ 𝑅 ↑𝑟 𝑀 ) ∘ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) ) |
74 |
66 73
|
syl5eq |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑅 ∈ 𝑉 ) → ◡ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) = ( ( ◡ 𝑅 ↑𝑟 𝑀 ) ∘ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) ) |
75 |
65 74 71
|
3eqtr4d |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑅 ∈ 𝑉 ) → ◡ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) = ◡ ( 𝑅 ↑𝑟 𝑀 ) ) |
76 |
|
relco |
⊢ Rel ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) |
77 |
|
relexpuzrel |
⊢ ( ( 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑅 ∈ 𝑉 ) → Rel ( 𝑅 ↑𝑟 𝑀 ) ) |
78 |
77
|
3adant1 |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑅 ∈ 𝑉 ) → Rel ( 𝑅 ↑𝑟 𝑀 ) ) |
79 |
|
cnveqb |
⊢ ( ( Rel ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) ∧ Rel ( 𝑅 ↑𝑟 𝑀 ) ) → ( ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) = ( 𝑅 ↑𝑟 𝑀 ) ↔ ◡ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) = ◡ ( 𝑅 ↑𝑟 𝑀 ) ) ) |
80 |
76 78 79
|
sylancr |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑅 ∈ 𝑉 ) → ( ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) = ( 𝑅 ↑𝑟 𝑀 ) ↔ ◡ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) = ◡ ( 𝑅 ↑𝑟 𝑀 ) ) ) |
81 |
75 80
|
mpbird |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑅 ∈ 𝑉 ) → ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) = ( 𝑅 ↑𝑟 𝑀 ) ) |
82 |
|
simp1 |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑅 ∈ 𝑉 ) → 𝑁 = 0 ) |
83 |
82
|
oveq2d |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑅 ∈ 𝑉 ) → ( 𝑅 ↑𝑟 𝑁 ) = ( 𝑅 ↑𝑟 0 ) ) |
84 |
32
|
3ad2ant3 |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑅 ∈ 𝑉 ) → ( 𝑅 ↑𝑟 0 ) = ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) |
85 |
83 84
|
eqtrd |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑅 ∈ 𝑉 ) → ( 𝑅 ↑𝑟 𝑁 ) = ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) |
86 |
85
|
coeq1d |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑅 ∈ 𝑉 ) → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) = ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) ) |
87 |
82
|
oveq1d |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑅 ∈ 𝑉 ) → ( 𝑁 + 𝑀 ) = ( 0 + 𝑀 ) ) |
88 |
|
eluzelcn |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 2 ) → 𝑀 ∈ ℂ ) |
89 |
50 88
|
syl |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑅 ∈ 𝑉 ) → 𝑀 ∈ ℂ ) |
90 |
89
|
addid2d |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑅 ∈ 𝑉 ) → ( 0 + 𝑀 ) = 𝑀 ) |
91 |
87 90
|
eqtrd |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑅 ∈ 𝑉 ) → ( 𝑁 + 𝑀 ) = 𝑀 ) |
92 |
91
|
oveq2d |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑅 ∈ 𝑉 ) → ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) = ( 𝑅 ↑𝑟 𝑀 ) ) |
93 |
81 86 92
|
3eqtr4d |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑅 ∈ 𝑉 ) → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) = ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) |
94 |
93 5
|
syl |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑅 ∈ 𝑉 ) → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) ⊆ ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) |
95 |
94
|
3exp |
⊢ ( 𝑁 = 0 → ( 𝑀 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑅 ∈ 𝑉 → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) ⊆ ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) ) ) |
96 |
48 95
|
jaod |
⊢ ( 𝑁 = 0 → ( ( 𝑀 = 1 ∨ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ) → ( 𝑅 ∈ 𝑉 → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) ⊆ ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) ) ) |
97 |
8 96
|
syl5bi |
⊢ ( 𝑁 = 0 → ( 𝑀 ∈ ℕ → ( 𝑅 ∈ 𝑉 → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) ⊆ ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) ) ) |
98 |
7 97
|
jaoi |
⊢ ( ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) → ( 𝑀 ∈ ℕ → ( 𝑅 ∈ 𝑉 → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) ⊆ ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) ) ) |
99 |
3 98
|
syl |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑀 ∈ ℕ → ( 𝑅 ∈ 𝑉 → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) ⊆ ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) ) ) |
100 |
|
elnn1uz2 |
⊢ ( 𝑁 ∈ ℕ ↔ ( 𝑁 = 1 ∨ 𝑁 ∈ ( ℤ≥ ‘ 2 ) ) ) |
101 |
100
|
biimpi |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 = 1 ∨ 𝑁 ∈ ( ℤ≥ ‘ 2 ) ) ) |
102 |
|
coires1 |
⊢ ( 𝑅 ∘ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) = ( 𝑅 ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) |
103 |
|
resss |
⊢ ( 𝑅 ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑅 |
104 |
102 103
|
eqsstri |
⊢ ( 𝑅 ∘ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) ⊆ 𝑅 |
105 |
104
|
a1i |
⊢ ( ( 𝑁 = 1 ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → ( 𝑅 ∘ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) ⊆ 𝑅 ) |
106 |
|
simp1 |
⊢ ( ( 𝑁 = 1 ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → 𝑁 = 1 ) |
107 |
106
|
oveq2d |
⊢ ( ( 𝑁 = 1 ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → ( 𝑅 ↑𝑟 𝑁 ) = ( 𝑅 ↑𝑟 1 ) ) |
108 |
37
|
3ad2ant3 |
⊢ ( ( 𝑁 = 1 ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → ( 𝑅 ↑𝑟 1 ) = 𝑅 ) |
109 |
107 108
|
eqtrd |
⊢ ( ( 𝑁 = 1 ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → ( 𝑅 ↑𝑟 𝑁 ) = 𝑅 ) |
110 |
|
simp2 |
⊢ ( ( 𝑁 = 1 ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → 𝑀 = 0 ) |
111 |
110
|
oveq2d |
⊢ ( ( 𝑁 = 1 ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → ( 𝑅 ↑𝑟 𝑀 ) = ( 𝑅 ↑𝑟 0 ) ) |
112 |
32
|
3ad2ant3 |
⊢ ( ( 𝑁 = 1 ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → ( 𝑅 ↑𝑟 0 ) = ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) |
113 |
111 112
|
eqtrd |
⊢ ( ( 𝑁 = 1 ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → ( 𝑅 ↑𝑟 𝑀 ) = ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) |
114 |
109 113
|
coeq12d |
⊢ ( ( 𝑁 = 1 ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) = ( 𝑅 ∘ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) ) |
115 |
106 110
|
oveq12d |
⊢ ( ( 𝑁 = 1 ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → ( 𝑁 + 𝑀 ) = ( 1 + 0 ) ) |
116 |
|
1cnd |
⊢ ( ( 𝑁 = 1 ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → 1 ∈ ℂ ) |
117 |
116
|
addid1d |
⊢ ( ( 𝑁 = 1 ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → ( 1 + 0 ) = 1 ) |
118 |
115 117
|
eqtrd |
⊢ ( ( 𝑁 = 1 ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → ( 𝑁 + 𝑀 ) = 1 ) |
119 |
118
|
oveq2d |
⊢ ( ( 𝑁 = 1 ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) = ( 𝑅 ↑𝑟 1 ) ) |
120 |
119 108
|
eqtrd |
⊢ ( ( 𝑁 = 1 ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) = 𝑅 ) |
121 |
105 114 120
|
3sstr4d |
⊢ ( ( 𝑁 = 1 ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) ⊆ ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) |
122 |
121
|
3exp |
⊢ ( 𝑁 = 1 → ( 𝑀 = 0 → ( 𝑅 ∈ 𝑉 → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) ⊆ ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) ) ) |
123 |
|
coires1 |
⊢ ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) = ( ( 𝑅 ↑𝑟 𝑁 ) ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) |
124 |
|
relexpuzrel |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑅 ∈ 𝑉 ) → Rel ( 𝑅 ↑𝑟 𝑁 ) ) |
125 |
124
|
3adant2 |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → Rel ( 𝑅 ↑𝑟 𝑁 ) ) |
126 |
|
simp1 |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → 𝑁 ∈ ( ℤ≥ ‘ 2 ) ) |
127 |
|
eluz2nn |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → 𝑁 ∈ ℕ ) |
128 |
126 127
|
syl |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → 𝑁 ∈ ℕ ) |
129 |
|
simp3 |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → 𝑅 ∈ 𝑉 ) |
130 |
|
relexpnndm |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ) → dom ( 𝑅 ↑𝑟 𝑁 ) ⊆ dom 𝑅 ) |
131 |
128 129 130
|
syl2anc |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → dom ( 𝑅 ↑𝑟 𝑁 ) ⊆ dom 𝑅 ) |
132 |
|
ssun1 |
⊢ dom 𝑅 ⊆ ( dom 𝑅 ∪ ran 𝑅 ) |
133 |
131 132
|
sstrdi |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → dom ( 𝑅 ↑𝑟 𝑁 ) ⊆ ( dom 𝑅 ∪ ran 𝑅 ) ) |
134 |
|
relssres |
⊢ ( ( Rel ( 𝑅 ↑𝑟 𝑁 ) ∧ dom ( 𝑅 ↑𝑟 𝑁 ) ⊆ ( dom 𝑅 ∪ ran 𝑅 ) ) → ( ( 𝑅 ↑𝑟 𝑁 ) ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) = ( 𝑅 ↑𝑟 𝑁 ) ) |
135 |
125 133 134
|
syl2anc |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → ( ( 𝑅 ↑𝑟 𝑁 ) ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) = ( 𝑅 ↑𝑟 𝑁 ) ) |
136 |
123 135
|
syl5eq |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) = ( 𝑅 ↑𝑟 𝑁 ) ) |
137 |
|
simp2 |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → 𝑀 = 0 ) |
138 |
137
|
oveq2d |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → ( 𝑅 ↑𝑟 𝑀 ) = ( 𝑅 ↑𝑟 0 ) ) |
139 |
32
|
3ad2ant3 |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → ( 𝑅 ↑𝑟 0 ) = ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) |
140 |
138 139
|
eqtrd |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → ( 𝑅 ↑𝑟 𝑀 ) = ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) |
141 |
140
|
coeq2d |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) = ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) ) |
142 |
137
|
oveq2d |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → ( 𝑁 + 𝑀 ) = ( 𝑁 + 0 ) ) |
143 |
|
eluzelcn |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → 𝑁 ∈ ℂ ) |
144 |
126 143
|
syl |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → 𝑁 ∈ ℂ ) |
145 |
144
|
addid1d |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → ( 𝑁 + 0 ) = 𝑁 ) |
146 |
142 145
|
eqtrd |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → ( 𝑁 + 𝑀 ) = 𝑁 ) |
147 |
146
|
oveq2d |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) = ( 𝑅 ↑𝑟 𝑁 ) ) |
148 |
136 141 147
|
3eqtr4d |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) = ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) |
149 |
148 5
|
syl |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) ⊆ ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) |
150 |
149
|
3exp |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑀 = 0 → ( 𝑅 ∈ 𝑉 → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) ⊆ ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) ) ) |
151 |
122 150
|
jaoi |
⊢ ( ( 𝑁 = 1 ∨ 𝑁 ∈ ( ℤ≥ ‘ 2 ) ) → ( 𝑀 = 0 → ( 𝑅 ∈ 𝑉 → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) ⊆ ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) ) ) |
152 |
101 151
|
syl |
⊢ ( 𝑁 ∈ ℕ → ( 𝑀 = 0 → ( 𝑅 ∈ 𝑉 → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) ⊆ ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) ) ) |
153 |
|
coires1 |
⊢ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ∘ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) = ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) |
154 |
|
resres |
⊢ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) = ( I ↾ ( ( dom 𝑅 ∪ ran 𝑅 ) ∩ ( dom 𝑅 ∪ ran 𝑅 ) ) ) |
155 |
|
inidm |
⊢ ( ( dom 𝑅 ∪ ran 𝑅 ) ∩ ( dom 𝑅 ∪ ran 𝑅 ) ) = ( dom 𝑅 ∪ ran 𝑅 ) |
156 |
155
|
reseq2i |
⊢ ( I ↾ ( ( dom 𝑅 ∪ ran 𝑅 ) ∩ ( dom 𝑅 ∪ ran 𝑅 ) ) ) = ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) |
157 |
153 154 156
|
3eqtri |
⊢ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ∘ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) = ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) |
158 |
|
simp1 |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → 𝑁 = 0 ) |
159 |
158
|
oveq2d |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → ( 𝑅 ↑𝑟 𝑁 ) = ( 𝑅 ↑𝑟 0 ) ) |
160 |
32
|
3ad2ant3 |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → ( 𝑅 ↑𝑟 0 ) = ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) |
161 |
159 160
|
eqtrd |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → ( 𝑅 ↑𝑟 𝑁 ) = ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) |
162 |
|
simp2 |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → 𝑀 = 0 ) |
163 |
162
|
oveq2d |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → ( 𝑅 ↑𝑟 𝑀 ) = ( 𝑅 ↑𝑟 0 ) ) |
164 |
163 160
|
eqtrd |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → ( 𝑅 ↑𝑟 𝑀 ) = ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) |
165 |
161 164
|
coeq12d |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) = ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ∘ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) ) |
166 |
158 162
|
oveq12d |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → ( 𝑁 + 𝑀 ) = ( 0 + 0 ) ) |
167 |
|
00id |
⊢ ( 0 + 0 ) = 0 |
168 |
167
|
a1i |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → ( 0 + 0 ) = 0 ) |
169 |
166 168
|
eqtrd |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → ( 𝑁 + 𝑀 ) = 0 ) |
170 |
169
|
oveq2d |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) = ( 𝑅 ↑𝑟 0 ) ) |
171 |
170 160
|
eqtrd |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) = ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) |
172 |
157 165 171
|
3eqtr4a |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) = ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) |
173 |
172 5
|
syl |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) ⊆ ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) |
174 |
173
|
3exp |
⊢ ( 𝑁 = 0 → ( 𝑀 = 0 → ( 𝑅 ∈ 𝑉 → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) ⊆ ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) ) ) |
175 |
152 174
|
jaoi |
⊢ ( ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) → ( 𝑀 = 0 → ( 𝑅 ∈ 𝑉 → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) ⊆ ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) ) ) |
176 |
3 175
|
syl |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑀 = 0 → ( 𝑅 ∈ 𝑉 → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) ⊆ ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) ) ) |
177 |
99 176
|
jaod |
⊢ ( 𝑁 ∈ ℕ0 → ( ( 𝑀 ∈ ℕ ∨ 𝑀 = 0 ) → ( 𝑅 ∈ 𝑉 → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) ⊆ ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) ) ) |
178 |
1 177
|
syl5bi |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑀 ∈ ℕ0 → ( 𝑅 ∈ 𝑉 → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) ⊆ ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) ) ) |
179 |
178
|
3imp |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ) → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) ⊆ ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) |