| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elnn0 |
⊢ ( 𝑀 ∈ ℕ0 ↔ ( 𝑀 ∈ ℕ ∨ 𝑀 = 0 ) ) |
| 2 |
|
elnn0 |
⊢ ( 𝑁 ∈ ℕ0 ↔ ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ) |
| 3 |
2
|
biimpi |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ) |
| 4 |
|
relexpaddnn |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ) → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) = ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) |
| 5 |
|
eqimss |
⊢ ( ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) = ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) ⊆ ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) |
| 6 |
4 5
|
syl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ) → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) ⊆ ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) |
| 7 |
6
|
3exp |
⊢ ( 𝑁 ∈ ℕ → ( 𝑀 ∈ ℕ → ( 𝑅 ∈ 𝑉 → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) ⊆ ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) ) ) |
| 8 |
|
elnn1uz2 |
⊢ ( 𝑀 ∈ ℕ ↔ ( 𝑀 = 1 ∨ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ) ) |
| 9 |
|
relco |
⊢ Rel ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ∘ 𝑅 ) |
| 10 |
|
dfrel2 |
⊢ ( Rel ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ∘ 𝑅 ) ↔ ◡ ◡ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ∘ 𝑅 ) = ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ∘ 𝑅 ) ) |
| 11 |
10
|
biimpi |
⊢ ( Rel ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ∘ 𝑅 ) → ◡ ◡ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ∘ 𝑅 ) = ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ∘ 𝑅 ) ) |
| 12 |
9 11
|
ax-mp |
⊢ ◡ ◡ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ∘ 𝑅 ) = ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ∘ 𝑅 ) |
| 13 |
|
cnvco |
⊢ ◡ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ∘ 𝑅 ) = ( ◡ 𝑅 ∘ ◡ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) |
| 14 |
|
cnvresid |
⊢ ◡ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) = ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) |
| 15 |
14
|
coeq2i |
⊢ ( ◡ 𝑅 ∘ ◡ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) = ( ◡ 𝑅 ∘ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) |
| 16 |
|
coires1 |
⊢ ( ◡ 𝑅 ∘ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) = ( ◡ 𝑅 ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) |
| 17 |
13 15 16
|
3eqtri |
⊢ ◡ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ∘ 𝑅 ) = ( ◡ 𝑅 ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) |
| 18 |
|
eqimss |
⊢ ( ◡ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ∘ 𝑅 ) = ( ◡ 𝑅 ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) → ◡ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ∘ 𝑅 ) ⊆ ( ◡ 𝑅 ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) |
| 19 |
17 18
|
ax-mp |
⊢ ◡ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ∘ 𝑅 ) ⊆ ( ◡ 𝑅 ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) |
| 20 |
|
cnvss |
⊢ ( ◡ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ∘ 𝑅 ) ⊆ ( ◡ 𝑅 ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) → ◡ ◡ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ∘ 𝑅 ) ⊆ ◡ ( ◡ 𝑅 ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) |
| 21 |
19 20
|
ax-mp |
⊢ ◡ ◡ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ∘ 𝑅 ) ⊆ ◡ ( ◡ 𝑅 ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) |
| 22 |
|
resss |
⊢ ( ◡ 𝑅 ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ ◡ 𝑅 |
| 23 |
|
cnvss |
⊢ ( ( ◡ 𝑅 ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ ◡ 𝑅 → ◡ ( ◡ 𝑅 ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ ◡ ◡ 𝑅 ) |
| 24 |
22 23
|
ax-mp |
⊢ ◡ ( ◡ 𝑅 ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ ◡ ◡ 𝑅 |
| 25 |
21 24
|
sstri |
⊢ ◡ ◡ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ∘ 𝑅 ) ⊆ ◡ ◡ 𝑅 |
| 26 |
12 25
|
eqsstrri |
⊢ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ∘ 𝑅 ) ⊆ ◡ ◡ 𝑅 |
| 27 |
|
cnvcnvss |
⊢ ◡ ◡ 𝑅 ⊆ 𝑅 |
| 28 |
26 27
|
sstri |
⊢ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ∘ 𝑅 ) ⊆ 𝑅 |
| 29 |
28
|
a1i |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 = 1 ∧ 𝑅 ∈ 𝑉 ) → ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ∘ 𝑅 ) ⊆ 𝑅 ) |
| 30 |
|
simp1 |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 = 1 ∧ 𝑅 ∈ 𝑉 ) → 𝑁 = 0 ) |
| 31 |
30
|
oveq2d |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 = 1 ∧ 𝑅 ∈ 𝑉 ) → ( 𝑅 ↑𝑟 𝑁 ) = ( 𝑅 ↑𝑟 0 ) ) |
| 32 |
|
relexp0g |
⊢ ( 𝑅 ∈ 𝑉 → ( 𝑅 ↑𝑟 0 ) = ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) |
| 33 |
32
|
3ad2ant3 |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 = 1 ∧ 𝑅 ∈ 𝑉 ) → ( 𝑅 ↑𝑟 0 ) = ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) |
| 34 |
31 33
|
eqtrd |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 = 1 ∧ 𝑅 ∈ 𝑉 ) → ( 𝑅 ↑𝑟 𝑁 ) = ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) |
| 35 |
|
simp2 |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 = 1 ∧ 𝑅 ∈ 𝑉 ) → 𝑀 = 1 ) |
| 36 |
35
|
oveq2d |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 = 1 ∧ 𝑅 ∈ 𝑉 ) → ( 𝑅 ↑𝑟 𝑀 ) = ( 𝑅 ↑𝑟 1 ) ) |
| 37 |
|
relexp1g |
⊢ ( 𝑅 ∈ 𝑉 → ( 𝑅 ↑𝑟 1 ) = 𝑅 ) |
| 38 |
37
|
3ad2ant3 |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 = 1 ∧ 𝑅 ∈ 𝑉 ) → ( 𝑅 ↑𝑟 1 ) = 𝑅 ) |
| 39 |
36 38
|
eqtrd |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 = 1 ∧ 𝑅 ∈ 𝑉 ) → ( 𝑅 ↑𝑟 𝑀 ) = 𝑅 ) |
| 40 |
34 39
|
coeq12d |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 = 1 ∧ 𝑅 ∈ 𝑉 ) → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) = ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ∘ 𝑅 ) ) |
| 41 |
30 35
|
oveq12d |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 = 1 ∧ 𝑅 ∈ 𝑉 ) → ( 𝑁 + 𝑀 ) = ( 0 + 1 ) ) |
| 42 |
|
1cnd |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 = 1 ∧ 𝑅 ∈ 𝑉 ) → 1 ∈ ℂ ) |
| 43 |
42
|
addlidd |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 = 1 ∧ 𝑅 ∈ 𝑉 ) → ( 0 + 1 ) = 1 ) |
| 44 |
41 43
|
eqtrd |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 = 1 ∧ 𝑅 ∈ 𝑉 ) → ( 𝑁 + 𝑀 ) = 1 ) |
| 45 |
44
|
oveq2d |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 = 1 ∧ 𝑅 ∈ 𝑉 ) → ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) = ( 𝑅 ↑𝑟 1 ) ) |
| 46 |
45 38
|
eqtrd |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 = 1 ∧ 𝑅 ∈ 𝑉 ) → ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) = 𝑅 ) |
| 47 |
29 40 46
|
3sstr4d |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 = 1 ∧ 𝑅 ∈ 𝑉 ) → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) ⊆ ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) |
| 48 |
47
|
3exp |
⊢ ( 𝑁 = 0 → ( 𝑀 = 1 → ( 𝑅 ∈ 𝑉 → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) ⊆ ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) ) ) |
| 49 |
|
coires1 |
⊢ ( ( ◡ 𝑅 ↑𝑟 𝑀 ) ∘ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) = ( ( ◡ 𝑅 ↑𝑟 𝑀 ) ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) |
| 50 |
|
simp2 |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑅 ∈ 𝑉 ) → 𝑀 ∈ ( ℤ≥ ‘ 2 ) ) |
| 51 |
|
cnvexg |
⊢ ( 𝑅 ∈ 𝑉 → ◡ 𝑅 ∈ V ) |
| 52 |
51
|
3ad2ant3 |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑅 ∈ 𝑉 ) → ◡ 𝑅 ∈ V ) |
| 53 |
|
relexpuzrel |
⊢ ( ( 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ ◡ 𝑅 ∈ V ) → Rel ( ◡ 𝑅 ↑𝑟 𝑀 ) ) |
| 54 |
50 52 53
|
syl2anc |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑅 ∈ 𝑉 ) → Rel ( ◡ 𝑅 ↑𝑟 𝑀 ) ) |
| 55 |
|
eluz2nn |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 2 ) → 𝑀 ∈ ℕ ) |
| 56 |
50 55
|
syl |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑅 ∈ 𝑉 ) → 𝑀 ∈ ℕ ) |
| 57 |
|
relexpnndm |
⊢ ( ( 𝑀 ∈ ℕ ∧ ◡ 𝑅 ∈ V ) → dom ( ◡ 𝑅 ↑𝑟 𝑀 ) ⊆ dom ◡ 𝑅 ) |
| 58 |
56 52 57
|
syl2anc |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑅 ∈ 𝑉 ) → dom ( ◡ 𝑅 ↑𝑟 𝑀 ) ⊆ dom ◡ 𝑅 ) |
| 59 |
|
df-rn |
⊢ ran 𝑅 = dom ◡ 𝑅 |
| 60 |
|
ssun2 |
⊢ ran 𝑅 ⊆ ( dom 𝑅 ∪ ran 𝑅 ) |
| 61 |
59 60
|
eqsstrri |
⊢ dom ◡ 𝑅 ⊆ ( dom 𝑅 ∪ ran 𝑅 ) |
| 62 |
58 61
|
sstrdi |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑅 ∈ 𝑉 ) → dom ( ◡ 𝑅 ↑𝑟 𝑀 ) ⊆ ( dom 𝑅 ∪ ran 𝑅 ) ) |
| 63 |
|
relssres |
⊢ ( ( Rel ( ◡ 𝑅 ↑𝑟 𝑀 ) ∧ dom ( ◡ 𝑅 ↑𝑟 𝑀 ) ⊆ ( dom 𝑅 ∪ ran 𝑅 ) ) → ( ( ◡ 𝑅 ↑𝑟 𝑀 ) ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) = ( ◡ 𝑅 ↑𝑟 𝑀 ) ) |
| 64 |
54 62 63
|
syl2anc |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑅 ∈ 𝑉 ) → ( ( ◡ 𝑅 ↑𝑟 𝑀 ) ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) = ( ◡ 𝑅 ↑𝑟 𝑀 ) ) |
| 65 |
49 64
|
eqtrid |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑅 ∈ 𝑉 ) → ( ( ◡ 𝑅 ↑𝑟 𝑀 ) ∘ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) = ( ◡ 𝑅 ↑𝑟 𝑀 ) ) |
| 66 |
|
cnvco |
⊢ ◡ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) = ( ◡ ( 𝑅 ↑𝑟 𝑀 ) ∘ ◡ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) |
| 67 |
|
simp3 |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑅 ∈ 𝑉 ) → 𝑅 ∈ 𝑉 ) |
| 68 |
|
eluzge2nn0 |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 2 ) → 𝑀 ∈ ℕ0 ) |
| 69 |
50 68
|
syl |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑅 ∈ 𝑉 ) → 𝑀 ∈ ℕ0 ) |
| 70 |
67 69
|
relexpcnvd |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑅 ∈ 𝑉 ) → ◡ ( 𝑅 ↑𝑟 𝑀 ) = ( ◡ 𝑅 ↑𝑟 𝑀 ) ) |
| 71 |
14
|
a1i |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑅 ∈ 𝑉 ) → ◡ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) = ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) |
| 72 |
70 71
|
coeq12d |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑅 ∈ 𝑉 ) → ( ◡ ( 𝑅 ↑𝑟 𝑀 ) ∘ ◡ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) = ( ( ◡ 𝑅 ↑𝑟 𝑀 ) ∘ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) ) |
| 73 |
66 72
|
eqtrid |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑅 ∈ 𝑉 ) → ◡ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) = ( ( ◡ 𝑅 ↑𝑟 𝑀 ) ∘ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) ) |
| 74 |
65 73 70
|
3eqtr4d |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑅 ∈ 𝑉 ) → ◡ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) = ◡ ( 𝑅 ↑𝑟 𝑀 ) ) |
| 75 |
|
relco |
⊢ Rel ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) |
| 76 |
|
relexpuzrel |
⊢ ( ( 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑅 ∈ 𝑉 ) → Rel ( 𝑅 ↑𝑟 𝑀 ) ) |
| 77 |
76
|
3adant1 |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑅 ∈ 𝑉 ) → Rel ( 𝑅 ↑𝑟 𝑀 ) ) |
| 78 |
|
cnveqb |
⊢ ( ( Rel ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) ∧ Rel ( 𝑅 ↑𝑟 𝑀 ) ) → ( ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) = ( 𝑅 ↑𝑟 𝑀 ) ↔ ◡ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) = ◡ ( 𝑅 ↑𝑟 𝑀 ) ) ) |
| 79 |
75 77 78
|
sylancr |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑅 ∈ 𝑉 ) → ( ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) = ( 𝑅 ↑𝑟 𝑀 ) ↔ ◡ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) = ◡ ( 𝑅 ↑𝑟 𝑀 ) ) ) |
| 80 |
74 79
|
mpbird |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑅 ∈ 𝑉 ) → ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) = ( 𝑅 ↑𝑟 𝑀 ) ) |
| 81 |
|
simp1 |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑅 ∈ 𝑉 ) → 𝑁 = 0 ) |
| 82 |
81
|
oveq2d |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑅 ∈ 𝑉 ) → ( 𝑅 ↑𝑟 𝑁 ) = ( 𝑅 ↑𝑟 0 ) ) |
| 83 |
32
|
3ad2ant3 |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑅 ∈ 𝑉 ) → ( 𝑅 ↑𝑟 0 ) = ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) |
| 84 |
82 83
|
eqtrd |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑅 ∈ 𝑉 ) → ( 𝑅 ↑𝑟 𝑁 ) = ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) |
| 85 |
84
|
coeq1d |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑅 ∈ 𝑉 ) → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) = ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) ) |
| 86 |
81
|
oveq1d |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑅 ∈ 𝑉 ) → ( 𝑁 + 𝑀 ) = ( 0 + 𝑀 ) ) |
| 87 |
|
eluzelcn |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 2 ) → 𝑀 ∈ ℂ ) |
| 88 |
50 87
|
syl |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑅 ∈ 𝑉 ) → 𝑀 ∈ ℂ ) |
| 89 |
88
|
addlidd |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑅 ∈ 𝑉 ) → ( 0 + 𝑀 ) = 𝑀 ) |
| 90 |
86 89
|
eqtrd |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑅 ∈ 𝑉 ) → ( 𝑁 + 𝑀 ) = 𝑀 ) |
| 91 |
90
|
oveq2d |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑅 ∈ 𝑉 ) → ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) = ( 𝑅 ↑𝑟 𝑀 ) ) |
| 92 |
80 85 91
|
3eqtr4d |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑅 ∈ 𝑉 ) → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) = ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) |
| 93 |
92 5
|
syl |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑅 ∈ 𝑉 ) → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) ⊆ ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) |
| 94 |
93
|
3exp |
⊢ ( 𝑁 = 0 → ( 𝑀 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑅 ∈ 𝑉 → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) ⊆ ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) ) ) |
| 95 |
48 94
|
jaod |
⊢ ( 𝑁 = 0 → ( ( 𝑀 = 1 ∨ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ) → ( 𝑅 ∈ 𝑉 → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) ⊆ ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) ) ) |
| 96 |
8 95
|
biimtrid |
⊢ ( 𝑁 = 0 → ( 𝑀 ∈ ℕ → ( 𝑅 ∈ 𝑉 → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) ⊆ ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) ) ) |
| 97 |
7 96
|
jaoi |
⊢ ( ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) → ( 𝑀 ∈ ℕ → ( 𝑅 ∈ 𝑉 → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) ⊆ ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) ) ) |
| 98 |
3 97
|
syl |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑀 ∈ ℕ → ( 𝑅 ∈ 𝑉 → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) ⊆ ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) ) ) |
| 99 |
|
elnn1uz2 |
⊢ ( 𝑁 ∈ ℕ ↔ ( 𝑁 = 1 ∨ 𝑁 ∈ ( ℤ≥ ‘ 2 ) ) ) |
| 100 |
99
|
biimpi |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 = 1 ∨ 𝑁 ∈ ( ℤ≥ ‘ 2 ) ) ) |
| 101 |
|
coires1 |
⊢ ( 𝑅 ∘ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) = ( 𝑅 ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) |
| 102 |
|
resss |
⊢ ( 𝑅 ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑅 |
| 103 |
101 102
|
eqsstri |
⊢ ( 𝑅 ∘ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) ⊆ 𝑅 |
| 104 |
103
|
a1i |
⊢ ( ( 𝑁 = 1 ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → ( 𝑅 ∘ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) ⊆ 𝑅 ) |
| 105 |
|
simp1 |
⊢ ( ( 𝑁 = 1 ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → 𝑁 = 1 ) |
| 106 |
105
|
oveq2d |
⊢ ( ( 𝑁 = 1 ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → ( 𝑅 ↑𝑟 𝑁 ) = ( 𝑅 ↑𝑟 1 ) ) |
| 107 |
37
|
3ad2ant3 |
⊢ ( ( 𝑁 = 1 ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → ( 𝑅 ↑𝑟 1 ) = 𝑅 ) |
| 108 |
106 107
|
eqtrd |
⊢ ( ( 𝑁 = 1 ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → ( 𝑅 ↑𝑟 𝑁 ) = 𝑅 ) |
| 109 |
|
simp2 |
⊢ ( ( 𝑁 = 1 ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → 𝑀 = 0 ) |
| 110 |
109
|
oveq2d |
⊢ ( ( 𝑁 = 1 ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → ( 𝑅 ↑𝑟 𝑀 ) = ( 𝑅 ↑𝑟 0 ) ) |
| 111 |
32
|
3ad2ant3 |
⊢ ( ( 𝑁 = 1 ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → ( 𝑅 ↑𝑟 0 ) = ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) |
| 112 |
110 111
|
eqtrd |
⊢ ( ( 𝑁 = 1 ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → ( 𝑅 ↑𝑟 𝑀 ) = ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) |
| 113 |
108 112
|
coeq12d |
⊢ ( ( 𝑁 = 1 ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) = ( 𝑅 ∘ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) ) |
| 114 |
105 109
|
oveq12d |
⊢ ( ( 𝑁 = 1 ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → ( 𝑁 + 𝑀 ) = ( 1 + 0 ) ) |
| 115 |
|
1cnd |
⊢ ( ( 𝑁 = 1 ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → 1 ∈ ℂ ) |
| 116 |
115
|
addridd |
⊢ ( ( 𝑁 = 1 ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → ( 1 + 0 ) = 1 ) |
| 117 |
114 116
|
eqtrd |
⊢ ( ( 𝑁 = 1 ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → ( 𝑁 + 𝑀 ) = 1 ) |
| 118 |
117
|
oveq2d |
⊢ ( ( 𝑁 = 1 ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) = ( 𝑅 ↑𝑟 1 ) ) |
| 119 |
118 107
|
eqtrd |
⊢ ( ( 𝑁 = 1 ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) = 𝑅 ) |
| 120 |
104 113 119
|
3sstr4d |
⊢ ( ( 𝑁 = 1 ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) ⊆ ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) |
| 121 |
120
|
3exp |
⊢ ( 𝑁 = 1 → ( 𝑀 = 0 → ( 𝑅 ∈ 𝑉 → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) ⊆ ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) ) ) |
| 122 |
|
coires1 |
⊢ ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) = ( ( 𝑅 ↑𝑟 𝑁 ) ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) |
| 123 |
|
relexpuzrel |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑅 ∈ 𝑉 ) → Rel ( 𝑅 ↑𝑟 𝑁 ) ) |
| 124 |
123
|
3adant2 |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → Rel ( 𝑅 ↑𝑟 𝑁 ) ) |
| 125 |
|
simp1 |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → 𝑁 ∈ ( ℤ≥ ‘ 2 ) ) |
| 126 |
|
eluz2nn |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → 𝑁 ∈ ℕ ) |
| 127 |
125 126
|
syl |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → 𝑁 ∈ ℕ ) |
| 128 |
|
simp3 |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → 𝑅 ∈ 𝑉 ) |
| 129 |
|
relexpnndm |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ) → dom ( 𝑅 ↑𝑟 𝑁 ) ⊆ dom 𝑅 ) |
| 130 |
127 128 129
|
syl2anc |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → dom ( 𝑅 ↑𝑟 𝑁 ) ⊆ dom 𝑅 ) |
| 131 |
|
ssun1 |
⊢ dom 𝑅 ⊆ ( dom 𝑅 ∪ ran 𝑅 ) |
| 132 |
130 131
|
sstrdi |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → dom ( 𝑅 ↑𝑟 𝑁 ) ⊆ ( dom 𝑅 ∪ ran 𝑅 ) ) |
| 133 |
|
relssres |
⊢ ( ( Rel ( 𝑅 ↑𝑟 𝑁 ) ∧ dom ( 𝑅 ↑𝑟 𝑁 ) ⊆ ( dom 𝑅 ∪ ran 𝑅 ) ) → ( ( 𝑅 ↑𝑟 𝑁 ) ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) = ( 𝑅 ↑𝑟 𝑁 ) ) |
| 134 |
124 132 133
|
syl2anc |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → ( ( 𝑅 ↑𝑟 𝑁 ) ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) = ( 𝑅 ↑𝑟 𝑁 ) ) |
| 135 |
122 134
|
eqtrid |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) = ( 𝑅 ↑𝑟 𝑁 ) ) |
| 136 |
|
simp2 |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → 𝑀 = 0 ) |
| 137 |
136
|
oveq2d |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → ( 𝑅 ↑𝑟 𝑀 ) = ( 𝑅 ↑𝑟 0 ) ) |
| 138 |
32
|
3ad2ant3 |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → ( 𝑅 ↑𝑟 0 ) = ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) |
| 139 |
137 138
|
eqtrd |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → ( 𝑅 ↑𝑟 𝑀 ) = ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) |
| 140 |
139
|
coeq2d |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) = ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) ) |
| 141 |
136
|
oveq2d |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → ( 𝑁 + 𝑀 ) = ( 𝑁 + 0 ) ) |
| 142 |
|
eluzelcn |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → 𝑁 ∈ ℂ ) |
| 143 |
125 142
|
syl |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → 𝑁 ∈ ℂ ) |
| 144 |
143
|
addridd |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → ( 𝑁 + 0 ) = 𝑁 ) |
| 145 |
141 144
|
eqtrd |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → ( 𝑁 + 𝑀 ) = 𝑁 ) |
| 146 |
145
|
oveq2d |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) = ( 𝑅 ↑𝑟 𝑁 ) ) |
| 147 |
135 140 146
|
3eqtr4d |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) = ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) |
| 148 |
147 5
|
syl |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) ⊆ ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) |
| 149 |
148
|
3exp |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑀 = 0 → ( 𝑅 ∈ 𝑉 → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) ⊆ ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) ) ) |
| 150 |
121 149
|
jaoi |
⊢ ( ( 𝑁 = 1 ∨ 𝑁 ∈ ( ℤ≥ ‘ 2 ) ) → ( 𝑀 = 0 → ( 𝑅 ∈ 𝑉 → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) ⊆ ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) ) ) |
| 151 |
100 150
|
syl |
⊢ ( 𝑁 ∈ ℕ → ( 𝑀 = 0 → ( 𝑅 ∈ 𝑉 → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) ⊆ ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) ) ) |
| 152 |
|
coires1 |
⊢ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ∘ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) = ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) |
| 153 |
|
resres |
⊢ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) = ( I ↾ ( ( dom 𝑅 ∪ ran 𝑅 ) ∩ ( dom 𝑅 ∪ ran 𝑅 ) ) ) |
| 154 |
|
inidm |
⊢ ( ( dom 𝑅 ∪ ran 𝑅 ) ∩ ( dom 𝑅 ∪ ran 𝑅 ) ) = ( dom 𝑅 ∪ ran 𝑅 ) |
| 155 |
154
|
reseq2i |
⊢ ( I ↾ ( ( dom 𝑅 ∪ ran 𝑅 ) ∩ ( dom 𝑅 ∪ ran 𝑅 ) ) ) = ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) |
| 156 |
152 153 155
|
3eqtri |
⊢ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ∘ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) = ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) |
| 157 |
|
simp1 |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → 𝑁 = 0 ) |
| 158 |
157
|
oveq2d |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → ( 𝑅 ↑𝑟 𝑁 ) = ( 𝑅 ↑𝑟 0 ) ) |
| 159 |
32
|
3ad2ant3 |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → ( 𝑅 ↑𝑟 0 ) = ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) |
| 160 |
158 159
|
eqtrd |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → ( 𝑅 ↑𝑟 𝑁 ) = ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) |
| 161 |
|
simp2 |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → 𝑀 = 0 ) |
| 162 |
161
|
oveq2d |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → ( 𝑅 ↑𝑟 𝑀 ) = ( 𝑅 ↑𝑟 0 ) ) |
| 163 |
162 159
|
eqtrd |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → ( 𝑅 ↑𝑟 𝑀 ) = ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) |
| 164 |
160 163
|
coeq12d |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) = ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ∘ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) ) |
| 165 |
157 161
|
oveq12d |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → ( 𝑁 + 𝑀 ) = ( 0 + 0 ) ) |
| 166 |
|
00id |
⊢ ( 0 + 0 ) = 0 |
| 167 |
166
|
a1i |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → ( 0 + 0 ) = 0 ) |
| 168 |
165 167
|
eqtrd |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → ( 𝑁 + 𝑀 ) = 0 ) |
| 169 |
168
|
oveq2d |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) = ( 𝑅 ↑𝑟 0 ) ) |
| 170 |
169 159
|
eqtrd |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) = ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) |
| 171 |
156 164 170
|
3eqtr4a |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) = ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) |
| 172 |
171 5
|
syl |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) ⊆ ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) |
| 173 |
172
|
3exp |
⊢ ( 𝑁 = 0 → ( 𝑀 = 0 → ( 𝑅 ∈ 𝑉 → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) ⊆ ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) ) ) |
| 174 |
151 173
|
jaoi |
⊢ ( ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) → ( 𝑀 = 0 → ( 𝑅 ∈ 𝑉 → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) ⊆ ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) ) ) |
| 175 |
3 174
|
syl |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑀 = 0 → ( 𝑅 ∈ 𝑉 → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) ⊆ ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) ) ) |
| 176 |
98 175
|
jaod |
⊢ ( 𝑁 ∈ ℕ0 → ( ( 𝑀 ∈ ℕ ∨ 𝑀 = 0 ) → ( 𝑅 ∈ 𝑉 → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) ⊆ ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) ) ) |
| 177 |
1 176
|
biimtrid |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑀 ∈ ℕ0 → ( 𝑅 ∈ 𝑉 → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) ⊆ ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) ) ) |
| 178 |
177
|
3imp |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ) → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) ⊆ ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) |