| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elnn0 |
|- ( M e. NN0 <-> ( M e. NN \/ M = 0 ) ) |
| 2 |
|
elnn0 |
|- ( N e. NN0 <-> ( N e. NN \/ N = 0 ) ) |
| 3 |
2
|
biimpi |
|- ( N e. NN0 -> ( N e. NN \/ N = 0 ) ) |
| 4 |
|
relexpaddnn |
|- ( ( N e. NN /\ M e. NN /\ R e. V ) -> ( ( R ^r N ) o. ( R ^r M ) ) = ( R ^r ( N + M ) ) ) |
| 5 |
|
eqimss |
|- ( ( ( R ^r N ) o. ( R ^r M ) ) = ( R ^r ( N + M ) ) -> ( ( R ^r N ) o. ( R ^r M ) ) C_ ( R ^r ( N + M ) ) ) |
| 6 |
4 5
|
syl |
|- ( ( N e. NN /\ M e. NN /\ R e. V ) -> ( ( R ^r N ) o. ( R ^r M ) ) C_ ( R ^r ( N + M ) ) ) |
| 7 |
6
|
3exp |
|- ( N e. NN -> ( M e. NN -> ( R e. V -> ( ( R ^r N ) o. ( R ^r M ) ) C_ ( R ^r ( N + M ) ) ) ) ) |
| 8 |
|
elnn1uz2 |
|- ( M e. NN <-> ( M = 1 \/ M e. ( ZZ>= ` 2 ) ) ) |
| 9 |
|
relco |
|- Rel ( ( _I |` ( dom R u. ran R ) ) o. R ) |
| 10 |
|
dfrel2 |
|- ( Rel ( ( _I |` ( dom R u. ran R ) ) o. R ) <-> `' `' ( ( _I |` ( dom R u. ran R ) ) o. R ) = ( ( _I |` ( dom R u. ran R ) ) o. R ) ) |
| 11 |
10
|
biimpi |
|- ( Rel ( ( _I |` ( dom R u. ran R ) ) o. R ) -> `' `' ( ( _I |` ( dom R u. ran R ) ) o. R ) = ( ( _I |` ( dom R u. ran R ) ) o. R ) ) |
| 12 |
9 11
|
ax-mp |
|- `' `' ( ( _I |` ( dom R u. ran R ) ) o. R ) = ( ( _I |` ( dom R u. ran R ) ) o. R ) |
| 13 |
|
cnvco |
|- `' ( ( _I |` ( dom R u. ran R ) ) o. R ) = ( `' R o. `' ( _I |` ( dom R u. ran R ) ) ) |
| 14 |
|
cnvresid |
|- `' ( _I |` ( dom R u. ran R ) ) = ( _I |` ( dom R u. ran R ) ) |
| 15 |
14
|
coeq2i |
|- ( `' R o. `' ( _I |` ( dom R u. ran R ) ) ) = ( `' R o. ( _I |` ( dom R u. ran R ) ) ) |
| 16 |
|
coires1 |
|- ( `' R o. ( _I |` ( dom R u. ran R ) ) ) = ( `' R |` ( dom R u. ran R ) ) |
| 17 |
13 15 16
|
3eqtri |
|- `' ( ( _I |` ( dom R u. ran R ) ) o. R ) = ( `' R |` ( dom R u. ran R ) ) |
| 18 |
|
eqimss |
|- ( `' ( ( _I |` ( dom R u. ran R ) ) o. R ) = ( `' R |` ( dom R u. ran R ) ) -> `' ( ( _I |` ( dom R u. ran R ) ) o. R ) C_ ( `' R |` ( dom R u. ran R ) ) ) |
| 19 |
17 18
|
ax-mp |
|- `' ( ( _I |` ( dom R u. ran R ) ) o. R ) C_ ( `' R |` ( dom R u. ran R ) ) |
| 20 |
|
cnvss |
|- ( `' ( ( _I |` ( dom R u. ran R ) ) o. R ) C_ ( `' R |` ( dom R u. ran R ) ) -> `' `' ( ( _I |` ( dom R u. ran R ) ) o. R ) C_ `' ( `' R |` ( dom R u. ran R ) ) ) |
| 21 |
19 20
|
ax-mp |
|- `' `' ( ( _I |` ( dom R u. ran R ) ) o. R ) C_ `' ( `' R |` ( dom R u. ran R ) ) |
| 22 |
|
resss |
|- ( `' R |` ( dom R u. ran R ) ) C_ `' R |
| 23 |
|
cnvss |
|- ( ( `' R |` ( dom R u. ran R ) ) C_ `' R -> `' ( `' R |` ( dom R u. ran R ) ) C_ `' `' R ) |
| 24 |
22 23
|
ax-mp |
|- `' ( `' R |` ( dom R u. ran R ) ) C_ `' `' R |
| 25 |
21 24
|
sstri |
|- `' `' ( ( _I |` ( dom R u. ran R ) ) o. R ) C_ `' `' R |
| 26 |
12 25
|
eqsstrri |
|- ( ( _I |` ( dom R u. ran R ) ) o. R ) C_ `' `' R |
| 27 |
|
cnvcnvss |
|- `' `' R C_ R |
| 28 |
26 27
|
sstri |
|- ( ( _I |` ( dom R u. ran R ) ) o. R ) C_ R |
| 29 |
28
|
a1i |
|- ( ( N = 0 /\ M = 1 /\ R e. V ) -> ( ( _I |` ( dom R u. ran R ) ) o. R ) C_ R ) |
| 30 |
|
simp1 |
|- ( ( N = 0 /\ M = 1 /\ R e. V ) -> N = 0 ) |
| 31 |
30
|
oveq2d |
|- ( ( N = 0 /\ M = 1 /\ R e. V ) -> ( R ^r N ) = ( R ^r 0 ) ) |
| 32 |
|
relexp0g |
|- ( R e. V -> ( R ^r 0 ) = ( _I |` ( dom R u. ran R ) ) ) |
| 33 |
32
|
3ad2ant3 |
|- ( ( N = 0 /\ M = 1 /\ R e. V ) -> ( R ^r 0 ) = ( _I |` ( dom R u. ran R ) ) ) |
| 34 |
31 33
|
eqtrd |
|- ( ( N = 0 /\ M = 1 /\ R e. V ) -> ( R ^r N ) = ( _I |` ( dom R u. ran R ) ) ) |
| 35 |
|
simp2 |
|- ( ( N = 0 /\ M = 1 /\ R e. V ) -> M = 1 ) |
| 36 |
35
|
oveq2d |
|- ( ( N = 0 /\ M = 1 /\ R e. V ) -> ( R ^r M ) = ( R ^r 1 ) ) |
| 37 |
|
relexp1g |
|- ( R e. V -> ( R ^r 1 ) = R ) |
| 38 |
37
|
3ad2ant3 |
|- ( ( N = 0 /\ M = 1 /\ R e. V ) -> ( R ^r 1 ) = R ) |
| 39 |
36 38
|
eqtrd |
|- ( ( N = 0 /\ M = 1 /\ R e. V ) -> ( R ^r M ) = R ) |
| 40 |
34 39
|
coeq12d |
|- ( ( N = 0 /\ M = 1 /\ R e. V ) -> ( ( R ^r N ) o. ( R ^r M ) ) = ( ( _I |` ( dom R u. ran R ) ) o. R ) ) |
| 41 |
30 35
|
oveq12d |
|- ( ( N = 0 /\ M = 1 /\ R e. V ) -> ( N + M ) = ( 0 + 1 ) ) |
| 42 |
|
1cnd |
|- ( ( N = 0 /\ M = 1 /\ R e. V ) -> 1 e. CC ) |
| 43 |
42
|
addlidd |
|- ( ( N = 0 /\ M = 1 /\ R e. V ) -> ( 0 + 1 ) = 1 ) |
| 44 |
41 43
|
eqtrd |
|- ( ( N = 0 /\ M = 1 /\ R e. V ) -> ( N + M ) = 1 ) |
| 45 |
44
|
oveq2d |
|- ( ( N = 0 /\ M = 1 /\ R e. V ) -> ( R ^r ( N + M ) ) = ( R ^r 1 ) ) |
| 46 |
45 38
|
eqtrd |
|- ( ( N = 0 /\ M = 1 /\ R e. V ) -> ( R ^r ( N + M ) ) = R ) |
| 47 |
29 40 46
|
3sstr4d |
|- ( ( N = 0 /\ M = 1 /\ R e. V ) -> ( ( R ^r N ) o. ( R ^r M ) ) C_ ( R ^r ( N + M ) ) ) |
| 48 |
47
|
3exp |
|- ( N = 0 -> ( M = 1 -> ( R e. V -> ( ( R ^r N ) o. ( R ^r M ) ) C_ ( R ^r ( N + M ) ) ) ) ) |
| 49 |
|
coires1 |
|- ( ( `' R ^r M ) o. ( _I |` ( dom R u. ran R ) ) ) = ( ( `' R ^r M ) |` ( dom R u. ran R ) ) |
| 50 |
|
simp2 |
|- ( ( N = 0 /\ M e. ( ZZ>= ` 2 ) /\ R e. V ) -> M e. ( ZZ>= ` 2 ) ) |
| 51 |
|
cnvexg |
|- ( R e. V -> `' R e. _V ) |
| 52 |
51
|
3ad2ant3 |
|- ( ( N = 0 /\ M e. ( ZZ>= ` 2 ) /\ R e. V ) -> `' R e. _V ) |
| 53 |
|
relexpuzrel |
|- ( ( M e. ( ZZ>= ` 2 ) /\ `' R e. _V ) -> Rel ( `' R ^r M ) ) |
| 54 |
50 52 53
|
syl2anc |
|- ( ( N = 0 /\ M e. ( ZZ>= ` 2 ) /\ R e. V ) -> Rel ( `' R ^r M ) ) |
| 55 |
|
eluz2nn |
|- ( M e. ( ZZ>= ` 2 ) -> M e. NN ) |
| 56 |
50 55
|
syl |
|- ( ( N = 0 /\ M e. ( ZZ>= ` 2 ) /\ R e. V ) -> M e. NN ) |
| 57 |
|
relexpnndm |
|- ( ( M e. NN /\ `' R e. _V ) -> dom ( `' R ^r M ) C_ dom `' R ) |
| 58 |
56 52 57
|
syl2anc |
|- ( ( N = 0 /\ M e. ( ZZ>= ` 2 ) /\ R e. V ) -> dom ( `' R ^r M ) C_ dom `' R ) |
| 59 |
|
df-rn |
|- ran R = dom `' R |
| 60 |
|
ssun2 |
|- ran R C_ ( dom R u. ran R ) |
| 61 |
59 60
|
eqsstrri |
|- dom `' R C_ ( dom R u. ran R ) |
| 62 |
58 61
|
sstrdi |
|- ( ( N = 0 /\ M e. ( ZZ>= ` 2 ) /\ R e. V ) -> dom ( `' R ^r M ) C_ ( dom R u. ran R ) ) |
| 63 |
|
relssres |
|- ( ( Rel ( `' R ^r M ) /\ dom ( `' R ^r M ) C_ ( dom R u. ran R ) ) -> ( ( `' R ^r M ) |` ( dom R u. ran R ) ) = ( `' R ^r M ) ) |
| 64 |
54 62 63
|
syl2anc |
|- ( ( N = 0 /\ M e. ( ZZ>= ` 2 ) /\ R e. V ) -> ( ( `' R ^r M ) |` ( dom R u. ran R ) ) = ( `' R ^r M ) ) |
| 65 |
49 64
|
eqtrid |
|- ( ( N = 0 /\ M e. ( ZZ>= ` 2 ) /\ R e. V ) -> ( ( `' R ^r M ) o. ( _I |` ( dom R u. ran R ) ) ) = ( `' R ^r M ) ) |
| 66 |
|
cnvco |
|- `' ( ( _I |` ( dom R u. ran R ) ) o. ( R ^r M ) ) = ( `' ( R ^r M ) o. `' ( _I |` ( dom R u. ran R ) ) ) |
| 67 |
|
simp3 |
|- ( ( N = 0 /\ M e. ( ZZ>= ` 2 ) /\ R e. V ) -> R e. V ) |
| 68 |
|
eluzge2nn0 |
|- ( M e. ( ZZ>= ` 2 ) -> M e. NN0 ) |
| 69 |
50 68
|
syl |
|- ( ( N = 0 /\ M e. ( ZZ>= ` 2 ) /\ R e. V ) -> M e. NN0 ) |
| 70 |
67 69
|
relexpcnvd |
|- ( ( N = 0 /\ M e. ( ZZ>= ` 2 ) /\ R e. V ) -> `' ( R ^r M ) = ( `' R ^r M ) ) |
| 71 |
14
|
a1i |
|- ( ( N = 0 /\ M e. ( ZZ>= ` 2 ) /\ R e. V ) -> `' ( _I |` ( dom R u. ran R ) ) = ( _I |` ( dom R u. ran R ) ) ) |
| 72 |
70 71
|
coeq12d |
|- ( ( N = 0 /\ M e. ( ZZ>= ` 2 ) /\ R e. V ) -> ( `' ( R ^r M ) o. `' ( _I |` ( dom R u. ran R ) ) ) = ( ( `' R ^r M ) o. ( _I |` ( dom R u. ran R ) ) ) ) |
| 73 |
66 72
|
eqtrid |
|- ( ( N = 0 /\ M e. ( ZZ>= ` 2 ) /\ R e. V ) -> `' ( ( _I |` ( dom R u. ran R ) ) o. ( R ^r M ) ) = ( ( `' R ^r M ) o. ( _I |` ( dom R u. ran R ) ) ) ) |
| 74 |
65 73 70
|
3eqtr4d |
|- ( ( N = 0 /\ M e. ( ZZ>= ` 2 ) /\ R e. V ) -> `' ( ( _I |` ( dom R u. ran R ) ) o. ( R ^r M ) ) = `' ( R ^r M ) ) |
| 75 |
|
relco |
|- Rel ( ( _I |` ( dom R u. ran R ) ) o. ( R ^r M ) ) |
| 76 |
|
relexpuzrel |
|- ( ( M e. ( ZZ>= ` 2 ) /\ R e. V ) -> Rel ( R ^r M ) ) |
| 77 |
76
|
3adant1 |
|- ( ( N = 0 /\ M e. ( ZZ>= ` 2 ) /\ R e. V ) -> Rel ( R ^r M ) ) |
| 78 |
|
cnveqb |
|- ( ( Rel ( ( _I |` ( dom R u. ran R ) ) o. ( R ^r M ) ) /\ Rel ( R ^r M ) ) -> ( ( ( _I |` ( dom R u. ran R ) ) o. ( R ^r M ) ) = ( R ^r M ) <-> `' ( ( _I |` ( dom R u. ran R ) ) o. ( R ^r M ) ) = `' ( R ^r M ) ) ) |
| 79 |
75 77 78
|
sylancr |
|- ( ( N = 0 /\ M e. ( ZZ>= ` 2 ) /\ R e. V ) -> ( ( ( _I |` ( dom R u. ran R ) ) o. ( R ^r M ) ) = ( R ^r M ) <-> `' ( ( _I |` ( dom R u. ran R ) ) o. ( R ^r M ) ) = `' ( R ^r M ) ) ) |
| 80 |
74 79
|
mpbird |
|- ( ( N = 0 /\ M e. ( ZZ>= ` 2 ) /\ R e. V ) -> ( ( _I |` ( dom R u. ran R ) ) o. ( R ^r M ) ) = ( R ^r M ) ) |
| 81 |
|
simp1 |
|- ( ( N = 0 /\ M e. ( ZZ>= ` 2 ) /\ R e. V ) -> N = 0 ) |
| 82 |
81
|
oveq2d |
|- ( ( N = 0 /\ M e. ( ZZ>= ` 2 ) /\ R e. V ) -> ( R ^r N ) = ( R ^r 0 ) ) |
| 83 |
32
|
3ad2ant3 |
|- ( ( N = 0 /\ M e. ( ZZ>= ` 2 ) /\ R e. V ) -> ( R ^r 0 ) = ( _I |` ( dom R u. ran R ) ) ) |
| 84 |
82 83
|
eqtrd |
|- ( ( N = 0 /\ M e. ( ZZ>= ` 2 ) /\ R e. V ) -> ( R ^r N ) = ( _I |` ( dom R u. ran R ) ) ) |
| 85 |
84
|
coeq1d |
|- ( ( N = 0 /\ M e. ( ZZ>= ` 2 ) /\ R e. V ) -> ( ( R ^r N ) o. ( R ^r M ) ) = ( ( _I |` ( dom R u. ran R ) ) o. ( R ^r M ) ) ) |
| 86 |
81
|
oveq1d |
|- ( ( N = 0 /\ M e. ( ZZ>= ` 2 ) /\ R e. V ) -> ( N + M ) = ( 0 + M ) ) |
| 87 |
|
eluzelcn |
|- ( M e. ( ZZ>= ` 2 ) -> M e. CC ) |
| 88 |
50 87
|
syl |
|- ( ( N = 0 /\ M e. ( ZZ>= ` 2 ) /\ R e. V ) -> M e. CC ) |
| 89 |
88
|
addlidd |
|- ( ( N = 0 /\ M e. ( ZZ>= ` 2 ) /\ R e. V ) -> ( 0 + M ) = M ) |
| 90 |
86 89
|
eqtrd |
|- ( ( N = 0 /\ M e. ( ZZ>= ` 2 ) /\ R e. V ) -> ( N + M ) = M ) |
| 91 |
90
|
oveq2d |
|- ( ( N = 0 /\ M e. ( ZZ>= ` 2 ) /\ R e. V ) -> ( R ^r ( N + M ) ) = ( R ^r M ) ) |
| 92 |
80 85 91
|
3eqtr4d |
|- ( ( N = 0 /\ M e. ( ZZ>= ` 2 ) /\ R e. V ) -> ( ( R ^r N ) o. ( R ^r M ) ) = ( R ^r ( N + M ) ) ) |
| 93 |
92 5
|
syl |
|- ( ( N = 0 /\ M e. ( ZZ>= ` 2 ) /\ R e. V ) -> ( ( R ^r N ) o. ( R ^r M ) ) C_ ( R ^r ( N + M ) ) ) |
| 94 |
93
|
3exp |
|- ( N = 0 -> ( M e. ( ZZ>= ` 2 ) -> ( R e. V -> ( ( R ^r N ) o. ( R ^r M ) ) C_ ( R ^r ( N + M ) ) ) ) ) |
| 95 |
48 94
|
jaod |
|- ( N = 0 -> ( ( M = 1 \/ M e. ( ZZ>= ` 2 ) ) -> ( R e. V -> ( ( R ^r N ) o. ( R ^r M ) ) C_ ( R ^r ( N + M ) ) ) ) ) |
| 96 |
8 95
|
biimtrid |
|- ( N = 0 -> ( M e. NN -> ( R e. V -> ( ( R ^r N ) o. ( R ^r M ) ) C_ ( R ^r ( N + M ) ) ) ) ) |
| 97 |
7 96
|
jaoi |
|- ( ( N e. NN \/ N = 0 ) -> ( M e. NN -> ( R e. V -> ( ( R ^r N ) o. ( R ^r M ) ) C_ ( R ^r ( N + M ) ) ) ) ) |
| 98 |
3 97
|
syl |
|- ( N e. NN0 -> ( M e. NN -> ( R e. V -> ( ( R ^r N ) o. ( R ^r M ) ) C_ ( R ^r ( N + M ) ) ) ) ) |
| 99 |
|
elnn1uz2 |
|- ( N e. NN <-> ( N = 1 \/ N e. ( ZZ>= ` 2 ) ) ) |
| 100 |
99
|
biimpi |
|- ( N e. NN -> ( N = 1 \/ N e. ( ZZ>= ` 2 ) ) ) |
| 101 |
|
coires1 |
|- ( R o. ( _I |` ( dom R u. ran R ) ) ) = ( R |` ( dom R u. ran R ) ) |
| 102 |
|
resss |
|- ( R |` ( dom R u. ran R ) ) C_ R |
| 103 |
101 102
|
eqsstri |
|- ( R o. ( _I |` ( dom R u. ran R ) ) ) C_ R |
| 104 |
103
|
a1i |
|- ( ( N = 1 /\ M = 0 /\ R e. V ) -> ( R o. ( _I |` ( dom R u. ran R ) ) ) C_ R ) |
| 105 |
|
simp1 |
|- ( ( N = 1 /\ M = 0 /\ R e. V ) -> N = 1 ) |
| 106 |
105
|
oveq2d |
|- ( ( N = 1 /\ M = 0 /\ R e. V ) -> ( R ^r N ) = ( R ^r 1 ) ) |
| 107 |
37
|
3ad2ant3 |
|- ( ( N = 1 /\ M = 0 /\ R e. V ) -> ( R ^r 1 ) = R ) |
| 108 |
106 107
|
eqtrd |
|- ( ( N = 1 /\ M = 0 /\ R e. V ) -> ( R ^r N ) = R ) |
| 109 |
|
simp2 |
|- ( ( N = 1 /\ M = 0 /\ R e. V ) -> M = 0 ) |
| 110 |
109
|
oveq2d |
|- ( ( N = 1 /\ M = 0 /\ R e. V ) -> ( R ^r M ) = ( R ^r 0 ) ) |
| 111 |
32
|
3ad2ant3 |
|- ( ( N = 1 /\ M = 0 /\ R e. V ) -> ( R ^r 0 ) = ( _I |` ( dom R u. ran R ) ) ) |
| 112 |
110 111
|
eqtrd |
|- ( ( N = 1 /\ M = 0 /\ R e. V ) -> ( R ^r M ) = ( _I |` ( dom R u. ran R ) ) ) |
| 113 |
108 112
|
coeq12d |
|- ( ( N = 1 /\ M = 0 /\ R e. V ) -> ( ( R ^r N ) o. ( R ^r M ) ) = ( R o. ( _I |` ( dom R u. ran R ) ) ) ) |
| 114 |
105 109
|
oveq12d |
|- ( ( N = 1 /\ M = 0 /\ R e. V ) -> ( N + M ) = ( 1 + 0 ) ) |
| 115 |
|
1cnd |
|- ( ( N = 1 /\ M = 0 /\ R e. V ) -> 1 e. CC ) |
| 116 |
115
|
addridd |
|- ( ( N = 1 /\ M = 0 /\ R e. V ) -> ( 1 + 0 ) = 1 ) |
| 117 |
114 116
|
eqtrd |
|- ( ( N = 1 /\ M = 0 /\ R e. V ) -> ( N + M ) = 1 ) |
| 118 |
117
|
oveq2d |
|- ( ( N = 1 /\ M = 0 /\ R e. V ) -> ( R ^r ( N + M ) ) = ( R ^r 1 ) ) |
| 119 |
118 107
|
eqtrd |
|- ( ( N = 1 /\ M = 0 /\ R e. V ) -> ( R ^r ( N + M ) ) = R ) |
| 120 |
104 113 119
|
3sstr4d |
|- ( ( N = 1 /\ M = 0 /\ R e. V ) -> ( ( R ^r N ) o. ( R ^r M ) ) C_ ( R ^r ( N + M ) ) ) |
| 121 |
120
|
3exp |
|- ( N = 1 -> ( M = 0 -> ( R e. V -> ( ( R ^r N ) o. ( R ^r M ) ) C_ ( R ^r ( N + M ) ) ) ) ) |
| 122 |
|
coires1 |
|- ( ( R ^r N ) o. ( _I |` ( dom R u. ran R ) ) ) = ( ( R ^r N ) |` ( dom R u. ran R ) ) |
| 123 |
|
relexpuzrel |
|- ( ( N e. ( ZZ>= ` 2 ) /\ R e. V ) -> Rel ( R ^r N ) ) |
| 124 |
123
|
3adant2 |
|- ( ( N e. ( ZZ>= ` 2 ) /\ M = 0 /\ R e. V ) -> Rel ( R ^r N ) ) |
| 125 |
|
simp1 |
|- ( ( N e. ( ZZ>= ` 2 ) /\ M = 0 /\ R e. V ) -> N e. ( ZZ>= ` 2 ) ) |
| 126 |
|
eluz2nn |
|- ( N e. ( ZZ>= ` 2 ) -> N e. NN ) |
| 127 |
125 126
|
syl |
|- ( ( N e. ( ZZ>= ` 2 ) /\ M = 0 /\ R e. V ) -> N e. NN ) |
| 128 |
|
simp3 |
|- ( ( N e. ( ZZ>= ` 2 ) /\ M = 0 /\ R e. V ) -> R e. V ) |
| 129 |
|
relexpnndm |
|- ( ( N e. NN /\ R e. V ) -> dom ( R ^r N ) C_ dom R ) |
| 130 |
127 128 129
|
syl2anc |
|- ( ( N e. ( ZZ>= ` 2 ) /\ M = 0 /\ R e. V ) -> dom ( R ^r N ) C_ dom R ) |
| 131 |
|
ssun1 |
|- dom R C_ ( dom R u. ran R ) |
| 132 |
130 131
|
sstrdi |
|- ( ( N e. ( ZZ>= ` 2 ) /\ M = 0 /\ R e. V ) -> dom ( R ^r N ) C_ ( dom R u. ran R ) ) |
| 133 |
|
relssres |
|- ( ( Rel ( R ^r N ) /\ dom ( R ^r N ) C_ ( dom R u. ran R ) ) -> ( ( R ^r N ) |` ( dom R u. ran R ) ) = ( R ^r N ) ) |
| 134 |
124 132 133
|
syl2anc |
|- ( ( N e. ( ZZ>= ` 2 ) /\ M = 0 /\ R e. V ) -> ( ( R ^r N ) |` ( dom R u. ran R ) ) = ( R ^r N ) ) |
| 135 |
122 134
|
eqtrid |
|- ( ( N e. ( ZZ>= ` 2 ) /\ M = 0 /\ R e. V ) -> ( ( R ^r N ) o. ( _I |` ( dom R u. ran R ) ) ) = ( R ^r N ) ) |
| 136 |
|
simp2 |
|- ( ( N e. ( ZZ>= ` 2 ) /\ M = 0 /\ R e. V ) -> M = 0 ) |
| 137 |
136
|
oveq2d |
|- ( ( N e. ( ZZ>= ` 2 ) /\ M = 0 /\ R e. V ) -> ( R ^r M ) = ( R ^r 0 ) ) |
| 138 |
32
|
3ad2ant3 |
|- ( ( N e. ( ZZ>= ` 2 ) /\ M = 0 /\ R e. V ) -> ( R ^r 0 ) = ( _I |` ( dom R u. ran R ) ) ) |
| 139 |
137 138
|
eqtrd |
|- ( ( N e. ( ZZ>= ` 2 ) /\ M = 0 /\ R e. V ) -> ( R ^r M ) = ( _I |` ( dom R u. ran R ) ) ) |
| 140 |
139
|
coeq2d |
|- ( ( N e. ( ZZ>= ` 2 ) /\ M = 0 /\ R e. V ) -> ( ( R ^r N ) o. ( R ^r M ) ) = ( ( R ^r N ) o. ( _I |` ( dom R u. ran R ) ) ) ) |
| 141 |
136
|
oveq2d |
|- ( ( N e. ( ZZ>= ` 2 ) /\ M = 0 /\ R e. V ) -> ( N + M ) = ( N + 0 ) ) |
| 142 |
|
eluzelcn |
|- ( N e. ( ZZ>= ` 2 ) -> N e. CC ) |
| 143 |
125 142
|
syl |
|- ( ( N e. ( ZZ>= ` 2 ) /\ M = 0 /\ R e. V ) -> N e. CC ) |
| 144 |
143
|
addridd |
|- ( ( N e. ( ZZ>= ` 2 ) /\ M = 0 /\ R e. V ) -> ( N + 0 ) = N ) |
| 145 |
141 144
|
eqtrd |
|- ( ( N e. ( ZZ>= ` 2 ) /\ M = 0 /\ R e. V ) -> ( N + M ) = N ) |
| 146 |
145
|
oveq2d |
|- ( ( N e. ( ZZ>= ` 2 ) /\ M = 0 /\ R e. V ) -> ( R ^r ( N + M ) ) = ( R ^r N ) ) |
| 147 |
135 140 146
|
3eqtr4d |
|- ( ( N e. ( ZZ>= ` 2 ) /\ M = 0 /\ R e. V ) -> ( ( R ^r N ) o. ( R ^r M ) ) = ( R ^r ( N + M ) ) ) |
| 148 |
147 5
|
syl |
|- ( ( N e. ( ZZ>= ` 2 ) /\ M = 0 /\ R e. V ) -> ( ( R ^r N ) o. ( R ^r M ) ) C_ ( R ^r ( N + M ) ) ) |
| 149 |
148
|
3exp |
|- ( N e. ( ZZ>= ` 2 ) -> ( M = 0 -> ( R e. V -> ( ( R ^r N ) o. ( R ^r M ) ) C_ ( R ^r ( N + M ) ) ) ) ) |
| 150 |
121 149
|
jaoi |
|- ( ( N = 1 \/ N e. ( ZZ>= ` 2 ) ) -> ( M = 0 -> ( R e. V -> ( ( R ^r N ) o. ( R ^r M ) ) C_ ( R ^r ( N + M ) ) ) ) ) |
| 151 |
100 150
|
syl |
|- ( N e. NN -> ( M = 0 -> ( R e. V -> ( ( R ^r N ) o. ( R ^r M ) ) C_ ( R ^r ( N + M ) ) ) ) ) |
| 152 |
|
coires1 |
|- ( ( _I |` ( dom R u. ran R ) ) o. ( _I |` ( dom R u. ran R ) ) ) = ( ( _I |` ( dom R u. ran R ) ) |` ( dom R u. ran R ) ) |
| 153 |
|
resres |
|- ( ( _I |` ( dom R u. ran R ) ) |` ( dom R u. ran R ) ) = ( _I |` ( ( dom R u. ran R ) i^i ( dom R u. ran R ) ) ) |
| 154 |
|
inidm |
|- ( ( dom R u. ran R ) i^i ( dom R u. ran R ) ) = ( dom R u. ran R ) |
| 155 |
154
|
reseq2i |
|- ( _I |` ( ( dom R u. ran R ) i^i ( dom R u. ran R ) ) ) = ( _I |` ( dom R u. ran R ) ) |
| 156 |
152 153 155
|
3eqtri |
|- ( ( _I |` ( dom R u. ran R ) ) o. ( _I |` ( dom R u. ran R ) ) ) = ( _I |` ( dom R u. ran R ) ) |
| 157 |
|
simp1 |
|- ( ( N = 0 /\ M = 0 /\ R e. V ) -> N = 0 ) |
| 158 |
157
|
oveq2d |
|- ( ( N = 0 /\ M = 0 /\ R e. V ) -> ( R ^r N ) = ( R ^r 0 ) ) |
| 159 |
32
|
3ad2ant3 |
|- ( ( N = 0 /\ M = 0 /\ R e. V ) -> ( R ^r 0 ) = ( _I |` ( dom R u. ran R ) ) ) |
| 160 |
158 159
|
eqtrd |
|- ( ( N = 0 /\ M = 0 /\ R e. V ) -> ( R ^r N ) = ( _I |` ( dom R u. ran R ) ) ) |
| 161 |
|
simp2 |
|- ( ( N = 0 /\ M = 0 /\ R e. V ) -> M = 0 ) |
| 162 |
161
|
oveq2d |
|- ( ( N = 0 /\ M = 0 /\ R e. V ) -> ( R ^r M ) = ( R ^r 0 ) ) |
| 163 |
162 159
|
eqtrd |
|- ( ( N = 0 /\ M = 0 /\ R e. V ) -> ( R ^r M ) = ( _I |` ( dom R u. ran R ) ) ) |
| 164 |
160 163
|
coeq12d |
|- ( ( N = 0 /\ M = 0 /\ R e. V ) -> ( ( R ^r N ) o. ( R ^r M ) ) = ( ( _I |` ( dom R u. ran R ) ) o. ( _I |` ( dom R u. ran R ) ) ) ) |
| 165 |
157 161
|
oveq12d |
|- ( ( N = 0 /\ M = 0 /\ R e. V ) -> ( N + M ) = ( 0 + 0 ) ) |
| 166 |
|
00id |
|- ( 0 + 0 ) = 0 |
| 167 |
166
|
a1i |
|- ( ( N = 0 /\ M = 0 /\ R e. V ) -> ( 0 + 0 ) = 0 ) |
| 168 |
165 167
|
eqtrd |
|- ( ( N = 0 /\ M = 0 /\ R e. V ) -> ( N + M ) = 0 ) |
| 169 |
168
|
oveq2d |
|- ( ( N = 0 /\ M = 0 /\ R e. V ) -> ( R ^r ( N + M ) ) = ( R ^r 0 ) ) |
| 170 |
169 159
|
eqtrd |
|- ( ( N = 0 /\ M = 0 /\ R e. V ) -> ( R ^r ( N + M ) ) = ( _I |` ( dom R u. ran R ) ) ) |
| 171 |
156 164 170
|
3eqtr4a |
|- ( ( N = 0 /\ M = 0 /\ R e. V ) -> ( ( R ^r N ) o. ( R ^r M ) ) = ( R ^r ( N + M ) ) ) |
| 172 |
171 5
|
syl |
|- ( ( N = 0 /\ M = 0 /\ R e. V ) -> ( ( R ^r N ) o. ( R ^r M ) ) C_ ( R ^r ( N + M ) ) ) |
| 173 |
172
|
3exp |
|- ( N = 0 -> ( M = 0 -> ( R e. V -> ( ( R ^r N ) o. ( R ^r M ) ) C_ ( R ^r ( N + M ) ) ) ) ) |
| 174 |
151 173
|
jaoi |
|- ( ( N e. NN \/ N = 0 ) -> ( M = 0 -> ( R e. V -> ( ( R ^r N ) o. ( R ^r M ) ) C_ ( R ^r ( N + M ) ) ) ) ) |
| 175 |
3 174
|
syl |
|- ( N e. NN0 -> ( M = 0 -> ( R e. V -> ( ( R ^r N ) o. ( R ^r M ) ) C_ ( R ^r ( N + M ) ) ) ) ) |
| 176 |
98 175
|
jaod |
|- ( N e. NN0 -> ( ( M e. NN \/ M = 0 ) -> ( R e. V -> ( ( R ^r N ) o. ( R ^r M ) ) C_ ( R ^r ( N + M ) ) ) ) ) |
| 177 |
1 176
|
biimtrid |
|- ( N e. NN0 -> ( M e. NN0 -> ( R e. V -> ( ( R ^r N ) o. ( R ^r M ) ) C_ ( R ^r ( N + M ) ) ) ) ) |
| 178 |
177
|
3imp |
|- ( ( N e. NN0 /\ M e. NN0 /\ R e. V ) -> ( ( R ^r N ) o. ( R ^r M ) ) C_ ( R ^r ( N + M ) ) ) |