Step |
Hyp |
Ref |
Expression |
1 |
|
simpl |
|- ( ( Rel A /\ dom A C_ B ) -> Rel A ) |
2 |
|
vex |
|- x e. _V |
3 |
|
vex |
|- y e. _V |
4 |
2 3
|
opeldm |
|- ( <. x , y >. e. A -> x e. dom A ) |
5 |
|
ssel |
|- ( dom A C_ B -> ( x e. dom A -> x e. B ) ) |
6 |
4 5
|
syl5 |
|- ( dom A C_ B -> ( <. x , y >. e. A -> x e. B ) ) |
7 |
6
|
ancrd |
|- ( dom A C_ B -> ( <. x , y >. e. A -> ( x e. B /\ <. x , y >. e. A ) ) ) |
8 |
3
|
opelresi |
|- ( <. x , y >. e. ( A |` B ) <-> ( x e. B /\ <. x , y >. e. A ) ) |
9 |
7 8
|
syl6ibr |
|- ( dom A C_ B -> ( <. x , y >. e. A -> <. x , y >. e. ( A |` B ) ) ) |
10 |
9
|
adantl |
|- ( ( Rel A /\ dom A C_ B ) -> ( <. x , y >. e. A -> <. x , y >. e. ( A |` B ) ) ) |
11 |
1 10
|
relssdv |
|- ( ( Rel A /\ dom A C_ B ) -> A C_ ( A |` B ) ) |
12 |
|
resss |
|- ( A |` B ) C_ A |
13 |
11 12
|
jctil |
|- ( ( Rel A /\ dom A C_ B ) -> ( ( A |` B ) C_ A /\ A C_ ( A |` B ) ) ) |
14 |
|
eqss |
|- ( ( A |` B ) = A <-> ( ( A |` B ) C_ A /\ A C_ ( A |` B ) ) ) |
15 |
13 14
|
sylibr |
|- ( ( Rel A /\ dom A C_ B ) -> ( A |` B ) = A ) |