Metamath Proof Explorer


Theorem relssdv

Description: Deduction from subclass principle for relations. (Contributed by NM, 11-Sep-2004)

Ref Expression
Hypotheses relssdv.1
|- ( ph -> Rel A )
relssdv.2
|- ( ph -> ( <. x , y >. e. A -> <. x , y >. e. B ) )
Assertion relssdv
|- ( ph -> A C_ B )

Proof

Step Hyp Ref Expression
1 relssdv.1
 |-  ( ph -> Rel A )
2 relssdv.2
 |-  ( ph -> ( <. x , y >. e. A -> <. x , y >. e. B ) )
3 2 alrimivv
 |-  ( ph -> A. x A. y ( <. x , y >. e. A -> <. x , y >. e. B ) )
4 ssrel
 |-  ( Rel A -> ( A C_ B <-> A. x A. y ( <. x , y >. e. A -> <. x , y >. e. B ) ) )
5 1 4 syl
 |-  ( ph -> ( A C_ B <-> A. x A. y ( <. x , y >. e. A -> <. x , y >. e. B ) ) )
6 3 5 mpbird
 |-  ( ph -> A C_ B )