Description: Deduction from subclass principle for relations. (Contributed by NM, 11-Sep-2004)
Ref | Expression | ||
---|---|---|---|
Hypotheses | relssdv.1 | |- ( ph -> Rel A ) |
|
relssdv.2 | |- ( ph -> ( <. x , y >. e. A -> <. x , y >. e. B ) ) |
||
Assertion | relssdv | |- ( ph -> A C_ B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relssdv.1 | |- ( ph -> Rel A ) |
|
2 | relssdv.2 | |- ( ph -> ( <. x , y >. e. A -> <. x , y >. e. B ) ) |
|
3 | 2 | alrimivv | |- ( ph -> A. x A. y ( <. x , y >. e. A -> <. x , y >. e. B ) ) |
4 | ssrel | |- ( Rel A -> ( A C_ B <-> A. x A. y ( <. x , y >. e. A -> <. x , y >. e. B ) ) ) |
|
5 | 1 4 | syl | |- ( ph -> ( A C_ B <-> A. x A. y ( <. x , y >. e. A -> <. x , y >. e. B ) ) ) |
6 | 3 5 | mpbird | |- ( ph -> A C_ B ) |