Metamath Proof Explorer


Theorem relssdv

Description: Deduction from subclass principle for relations. (Contributed by NM, 11-Sep-2004)

Ref Expression
Hypotheses relssdv.1 ( 𝜑 → Rel 𝐴 )
relssdv.2 ( 𝜑 → ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐴 → ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐵 ) )
Assertion relssdv ( 𝜑𝐴𝐵 )

Proof

Step Hyp Ref Expression
1 relssdv.1 ( 𝜑 → Rel 𝐴 )
2 relssdv.2 ( 𝜑 → ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐴 → ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐵 ) )
3 2 alrimivv ( 𝜑 → ∀ 𝑥𝑦 ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐴 → ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐵 ) )
4 ssrel ( Rel 𝐴 → ( 𝐴𝐵 ↔ ∀ 𝑥𝑦 ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐴 → ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐵 ) ) )
5 1 4 syl ( 𝜑 → ( 𝐴𝐵 ↔ ∀ 𝑥𝑦 ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐴 → ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐵 ) ) )
6 3 5 mpbird ( 𝜑𝐴𝐵 )