Metamath Proof Explorer


Theorem relssdv

Description: Deduction from subclass principle for relations. (Contributed by NM, 11-Sep-2004)

Ref Expression
Hypotheses relssdv.1 φ Rel A
relssdv.2 φ x y A x y B
Assertion relssdv φ A B

Proof

Step Hyp Ref Expression
1 relssdv.1 φ Rel A
2 relssdv.2 φ x y A x y B
3 2 alrimivv φ x y x y A x y B
4 ssrel Rel A A B x y x y A x y B
5 1 4 syl φ A B x y x y A x y B
6 3 5 mpbird φ A B