Step |
Hyp |
Ref |
Expression |
1 |
|
relexpaddd.1 |
|- ( ph -> Rel R ) |
2 |
|
relexpaddd.2 |
|- ( ph -> N e. NN0 ) |
3 |
|
relexpaddd.3 |
|- ( ph -> M e. NN0 ) |
4 |
2
|
adantr |
|- ( ( ph /\ R e. _V ) -> N e. NN0 ) |
5 |
3
|
adantr |
|- ( ( ph /\ R e. _V ) -> M e. NN0 ) |
6 |
|
simpr |
|- ( ( ph /\ R e. _V ) -> R e. _V ) |
7 |
1
|
a1d |
|- ( ph -> ( ( N + M ) = 1 -> Rel R ) ) |
8 |
7
|
adantr |
|- ( ( ph /\ R e. _V ) -> ( ( N + M ) = 1 -> Rel R ) ) |
9 |
|
relexpaddg |
|- ( ( N e. NN0 /\ ( M e. NN0 /\ R e. _V /\ ( ( N + M ) = 1 -> Rel R ) ) ) -> ( ( R ^r N ) o. ( R ^r M ) ) = ( R ^r ( N + M ) ) ) |
10 |
4 5 6 8 9
|
syl13anc |
|- ( ( ph /\ R e. _V ) -> ( ( R ^r N ) o. ( R ^r M ) ) = ( R ^r ( N + M ) ) ) |
11 |
10
|
ex |
|- ( ph -> ( R e. _V -> ( ( R ^r N ) o. ( R ^r M ) ) = ( R ^r ( N + M ) ) ) ) |
12 |
|
co01 |
|- ( (/) o. (/) ) = (/) |
13 |
|
reldmrelexp |
|- Rel dom ^r |
14 |
13
|
ovprc1 |
|- ( -. R e. _V -> ( R ^r N ) = (/) ) |
15 |
13
|
ovprc1 |
|- ( -. R e. _V -> ( R ^r M ) = (/) ) |
16 |
14 15
|
coeq12d |
|- ( -. R e. _V -> ( ( R ^r N ) o. ( R ^r M ) ) = ( (/) o. (/) ) ) |
17 |
13
|
ovprc1 |
|- ( -. R e. _V -> ( R ^r ( N + M ) ) = (/) ) |
18 |
12 16 17
|
3eqtr4a |
|- ( -. R e. _V -> ( ( R ^r N ) o. ( R ^r M ) ) = ( R ^r ( N + M ) ) ) |
19 |
11 18
|
pm2.61d1 |
|- ( ph -> ( ( R ^r N ) o. ( R ^r M ) ) = ( R ^r ( N + M ) ) ) |