Metamath Proof Explorer


Theorem relexpaddd

Description: Relation composition becomes addition under exponentiation. (Contributed by Drahflow, 12-Nov-2015) (Revised by RP, 30-May-2020) (Revised by AV, 12-Jul-2024)

Ref Expression
Hypotheses relexpaddd.1
|- ( ph -> Rel R )
relexpaddd.2
|- ( ph -> N e. NN0 )
relexpaddd.3
|- ( ph -> M e. NN0 )
Assertion relexpaddd
|- ( ph -> ( ( R ^r N ) o. ( R ^r M ) ) = ( R ^r ( N + M ) ) )

Proof

Step Hyp Ref Expression
1 relexpaddd.1
 |-  ( ph -> Rel R )
2 relexpaddd.2
 |-  ( ph -> N e. NN0 )
3 relexpaddd.3
 |-  ( ph -> M e. NN0 )
4 2 adantr
 |-  ( ( ph /\ R e. _V ) -> N e. NN0 )
5 3 adantr
 |-  ( ( ph /\ R e. _V ) -> M e. NN0 )
6 simpr
 |-  ( ( ph /\ R e. _V ) -> R e. _V )
7 1 a1d
 |-  ( ph -> ( ( N + M ) = 1 -> Rel R ) )
8 7 adantr
 |-  ( ( ph /\ R e. _V ) -> ( ( N + M ) = 1 -> Rel R ) )
9 relexpaddg
 |-  ( ( N e. NN0 /\ ( M e. NN0 /\ R e. _V /\ ( ( N + M ) = 1 -> Rel R ) ) ) -> ( ( R ^r N ) o. ( R ^r M ) ) = ( R ^r ( N + M ) ) )
10 4 5 6 8 9 syl13anc
 |-  ( ( ph /\ R e. _V ) -> ( ( R ^r N ) o. ( R ^r M ) ) = ( R ^r ( N + M ) ) )
11 10 ex
 |-  ( ph -> ( R e. _V -> ( ( R ^r N ) o. ( R ^r M ) ) = ( R ^r ( N + M ) ) ) )
12 co01
 |-  ( (/) o. (/) ) = (/)
13 reldmrelexp
 |-  Rel dom ^r
14 13 ovprc1
 |-  ( -. R e. _V -> ( R ^r N ) = (/) )
15 13 ovprc1
 |-  ( -. R e. _V -> ( R ^r M ) = (/) )
16 14 15 coeq12d
 |-  ( -. R e. _V -> ( ( R ^r N ) o. ( R ^r M ) ) = ( (/) o. (/) ) )
17 13 ovprc1
 |-  ( -. R e. _V -> ( R ^r ( N + M ) ) = (/) )
18 12 16 17 3eqtr4a
 |-  ( -. R e. _V -> ( ( R ^r N ) o. ( R ^r M ) ) = ( R ^r ( N + M ) ) )
19 11 18 pm2.61d1
 |-  ( ph -> ( ( R ^r N ) o. ( R ^r M ) ) = ( R ^r ( N + M ) ) )