Metamath Proof Explorer


Theorem relexpaddd

Description: Relation composition becomes addition under exponentiation. (Contributed by Drahflow, 12-Nov-2015) (Revised by RP, 30-May-2020) (Revised by AV, 12-Jul-2024)

Ref Expression
Hypotheses relexpaddd.1 φ Rel R
relexpaddd.2 φ N 0
relexpaddd.3 φ M 0
Assertion relexpaddd φ R r N R r M = R r N + M

Proof

Step Hyp Ref Expression
1 relexpaddd.1 φ Rel R
2 relexpaddd.2 φ N 0
3 relexpaddd.3 φ M 0
4 2 adantr φ R V N 0
5 3 adantr φ R V M 0
6 simpr φ R V R V
7 1 a1d φ N + M = 1 Rel R
8 7 adantr φ R V N + M = 1 Rel R
9 relexpaddg N 0 M 0 R V N + M = 1 Rel R R r N R r M = R r N + M
10 4 5 6 8 9 syl13anc φ R V R r N R r M = R r N + M
11 10 ex φ R V R r N R r M = R r N + M
12 co01 =
13 reldmrelexp Rel dom r
14 13 ovprc1 ¬ R V R r N =
15 13 ovprc1 ¬ R V R r M =
16 14 15 coeq12d ¬ R V R r N R r M =
17 13 ovprc1 ¬ R V R r N + M =
18 12 16 17 3eqtr4a ¬ R V R r N R r M = R r N + M
19 11 18 pm2.61d1 φ R r N R r M = R r N + M