Metamath Proof Explorer


Theorem relexpaddss

Description: The composition of two powers of a relation is a subset of the relation raised to the sum of those exponents. This is equality where R is a relation as shown by relexpaddd or when the sum of the powers isn't 1 as shown by relexpaddg . (Contributed by RP, 3-Jun-2020)

Ref Expression
Assertion relexpaddss N 0 M 0 R V R r N R r M R r N + M

Proof

Step Hyp Ref Expression
1 elnn0 M 0 M M = 0
2 elnn0 N 0 N N = 0
3 2 biimpi N 0 N N = 0
4 relexpaddnn N M R V R r N R r M = R r N + M
5 eqimss R r N R r M = R r N + M R r N R r M R r N + M
6 4 5 syl N M R V R r N R r M R r N + M
7 6 3exp N M R V R r N R r M R r N + M
8 elnn1uz2 M M = 1 M 2
9 relco Rel I dom R ran R R
10 dfrel2 Rel I dom R ran R R I dom R ran R R -1 -1 = I dom R ran R R
11 10 biimpi Rel I dom R ran R R I dom R ran R R -1 -1 = I dom R ran R R
12 9 11 ax-mp I dom R ran R R -1 -1 = I dom R ran R R
13 cnvco I dom R ran R R -1 = R -1 I dom R ran R -1
14 cnvresid I dom R ran R -1 = I dom R ran R
15 14 coeq2i R -1 I dom R ran R -1 = R -1 I dom R ran R
16 coires1 R -1 I dom R ran R = R -1 dom R ran R
17 13 15 16 3eqtri I dom R ran R R -1 = R -1 dom R ran R
18 eqimss I dom R ran R R -1 = R -1 dom R ran R I dom R ran R R -1 R -1 dom R ran R
19 17 18 ax-mp I dom R ran R R -1 R -1 dom R ran R
20 cnvss I dom R ran R R -1 R -1 dom R ran R I dom R ran R R -1 -1 R -1 dom R ran R -1
21 19 20 ax-mp I dom R ran R R -1 -1 R -1 dom R ran R -1
22 resss R -1 dom R ran R R -1
23 cnvss R -1 dom R ran R R -1 R -1 dom R ran R -1 R -1 -1
24 22 23 ax-mp R -1 dom R ran R -1 R -1 -1
25 21 24 sstri I dom R ran R R -1 -1 R -1 -1
26 12 25 eqsstrri I dom R ran R R R -1 -1
27 cnvcnvss R -1 -1 R
28 26 27 sstri I dom R ran R R R
29 28 a1i N = 0 M = 1 R V I dom R ran R R R
30 simp1 N = 0 M = 1 R V N = 0
31 30 oveq2d N = 0 M = 1 R V R r N = R r 0
32 relexp0g R V R r 0 = I dom R ran R
33 32 3ad2ant3 N = 0 M = 1 R V R r 0 = I dom R ran R
34 31 33 eqtrd N = 0 M = 1 R V R r N = I dom R ran R
35 simp2 N = 0 M = 1 R V M = 1
36 35 oveq2d N = 0 M = 1 R V R r M = R r 1
37 relexp1g R V R r 1 = R
38 37 3ad2ant3 N = 0 M = 1 R V R r 1 = R
39 36 38 eqtrd N = 0 M = 1 R V R r M = R
40 34 39 coeq12d N = 0 M = 1 R V R r N R r M = I dom R ran R R
41 30 35 oveq12d N = 0 M = 1 R V N + M = 0 + 1
42 1cnd N = 0 M = 1 R V 1
43 42 addid2d N = 0 M = 1 R V 0 + 1 = 1
44 41 43 eqtrd N = 0 M = 1 R V N + M = 1
45 44 oveq2d N = 0 M = 1 R V R r N + M = R r 1
46 45 38 eqtrd N = 0 M = 1 R V R r N + M = R
47 29 40 46 3sstr4d N = 0 M = 1 R V R r N R r M R r N + M
48 47 3exp N = 0 M = 1 R V R r N R r M R r N + M
49 coires1 R -1 r M I dom R ran R = R -1 r M dom R ran R
50 simp2 N = 0 M 2 R V M 2
51 cnvexg R V R -1 V
52 51 3ad2ant3 N = 0 M 2 R V R -1 V
53 relexpuzrel M 2 R -1 V Rel R -1 r M
54 50 52 53 syl2anc N = 0 M 2 R V Rel R -1 r M
55 eluz2nn M 2 M
56 50 55 syl N = 0 M 2 R V M
57 relexpnndm M R -1 V dom R -1 r M dom R -1
58 56 52 57 syl2anc N = 0 M 2 R V dom R -1 r M dom R -1
59 df-rn ran R = dom R -1
60 ssun2 ran R dom R ran R
61 59 60 eqsstrri dom R -1 dom R ran R
62 58 61 sstrdi N = 0 M 2 R V dom R -1 r M dom R ran R
63 relssres Rel R -1 r M dom R -1 r M dom R ran R R -1 r M dom R ran R = R -1 r M
64 54 62 63 syl2anc N = 0 M 2 R V R -1 r M dom R ran R = R -1 r M
65 49 64 eqtrid N = 0 M 2 R V R -1 r M I dom R ran R = R -1 r M
66 cnvco I dom R ran R R r M -1 = R r M -1 I dom R ran R -1
67 eluzge2nn0 M 2 M 0
68 50 67 syl N = 0 M 2 R V M 0
69 simp3 N = 0 M 2 R V R V
70 relexpcnv M 0 R V R r M -1 = R -1 r M
71 68 69 70 syl2anc N = 0 M 2 R V R r M -1 = R -1 r M
72 14 a1i N = 0 M 2 R V I dom R ran R -1 = I dom R ran R
73 71 72 coeq12d N = 0 M 2 R V R r M -1 I dom R ran R -1 = R -1 r M I dom R ran R
74 66 73 eqtrid N = 0 M 2 R V I dom R ran R R r M -1 = R -1 r M I dom R ran R
75 65 74 71 3eqtr4d N = 0 M 2 R V I dom R ran R R r M -1 = R r M -1
76 relco Rel I dom R ran R R r M
77 relexpuzrel M 2 R V Rel R r M
78 77 3adant1 N = 0 M 2 R V Rel R r M
79 cnveqb Rel I dom R ran R R r M Rel R r M I dom R ran R R r M = R r M I dom R ran R R r M -1 = R r M -1
80 76 78 79 sylancr N = 0 M 2 R V I dom R ran R R r M = R r M I dom R ran R R r M -1 = R r M -1
81 75 80 mpbird N = 0 M 2 R V I dom R ran R R r M = R r M
82 simp1 N = 0 M 2 R V N = 0
83 82 oveq2d N = 0 M 2 R V R r N = R r 0
84 32 3ad2ant3 N = 0 M 2 R V R r 0 = I dom R ran R
85 83 84 eqtrd N = 0 M 2 R V R r N = I dom R ran R
86 85 coeq1d N = 0 M 2 R V R r N R r M = I dom R ran R R r M
87 82 oveq1d N = 0 M 2 R V N + M = 0 + M
88 eluzelcn M 2 M
89 50 88 syl N = 0 M 2 R V M
90 89 addid2d N = 0 M 2 R V 0 + M = M
91 87 90 eqtrd N = 0 M 2 R V N + M = M
92 91 oveq2d N = 0 M 2 R V R r N + M = R r M
93 81 86 92 3eqtr4d N = 0 M 2 R V R r N R r M = R r N + M
94 93 5 syl N = 0 M 2 R V R r N R r M R r N + M
95 94 3exp N = 0 M 2 R V R r N R r M R r N + M
96 48 95 jaod N = 0 M = 1 M 2 R V R r N R r M R r N + M
97 8 96 syl5bi N = 0 M R V R r N R r M R r N + M
98 7 97 jaoi N N = 0 M R V R r N R r M R r N + M
99 3 98 syl N 0 M R V R r N R r M R r N + M
100 elnn1uz2 N N = 1 N 2
101 100 biimpi N N = 1 N 2
102 coires1 R I dom R ran R = R dom R ran R
103 resss R dom R ran R R
104 102 103 eqsstri R I dom R ran R R
105 104 a1i N = 1 M = 0 R V R I dom R ran R R
106 simp1 N = 1 M = 0 R V N = 1
107 106 oveq2d N = 1 M = 0 R V R r N = R r 1
108 37 3ad2ant3 N = 1 M = 0 R V R r 1 = R
109 107 108 eqtrd N = 1 M = 0 R V R r N = R
110 simp2 N = 1 M = 0 R V M = 0
111 110 oveq2d N = 1 M = 0 R V R r M = R r 0
112 32 3ad2ant3 N = 1 M = 0 R V R r 0 = I dom R ran R
113 111 112 eqtrd N = 1 M = 0 R V R r M = I dom R ran R
114 109 113 coeq12d N = 1 M = 0 R V R r N R r M = R I dom R ran R
115 106 110 oveq12d N = 1 M = 0 R V N + M = 1 + 0
116 1cnd N = 1 M = 0 R V 1
117 116 addid1d N = 1 M = 0 R V 1 + 0 = 1
118 115 117 eqtrd N = 1 M = 0 R V N + M = 1
119 118 oveq2d N = 1 M = 0 R V R r N + M = R r 1
120 119 108 eqtrd N = 1 M = 0 R V R r N + M = R
121 105 114 120 3sstr4d N = 1 M = 0 R V R r N R r M R r N + M
122 121 3exp N = 1 M = 0 R V R r N R r M R r N + M
123 coires1 R r N I dom R ran R = R r N dom R ran R
124 relexpuzrel N 2 R V Rel R r N
125 124 3adant2 N 2 M = 0 R V Rel R r N
126 simp1 N 2 M = 0 R V N 2
127 eluz2nn N 2 N
128 126 127 syl N 2 M = 0 R V N
129 simp3 N 2 M = 0 R V R V
130 relexpnndm N R V dom R r N dom R
131 128 129 130 syl2anc N 2 M = 0 R V dom R r N dom R
132 ssun1 dom R dom R ran R
133 131 132 sstrdi N 2 M = 0 R V dom R r N dom R ran R
134 relssres Rel R r N dom R r N dom R ran R R r N dom R ran R = R r N
135 125 133 134 syl2anc N 2 M = 0 R V R r N dom R ran R = R r N
136 123 135 eqtrid N 2 M = 0 R V R r N I dom R ran R = R r N
137 simp2 N 2 M = 0 R V M = 0
138 137 oveq2d N 2 M = 0 R V R r M = R r 0
139 32 3ad2ant3 N 2 M = 0 R V R r 0 = I dom R ran R
140 138 139 eqtrd N 2 M = 0 R V R r M = I dom R ran R
141 140 coeq2d N 2 M = 0 R V R r N R r M = R r N I dom R ran R
142 137 oveq2d N 2 M = 0 R V N + M = N + 0
143 eluzelcn N 2 N
144 126 143 syl N 2 M = 0 R V N
145 144 addid1d N 2 M = 0 R V N + 0 = N
146 142 145 eqtrd N 2 M = 0 R V N + M = N
147 146 oveq2d N 2 M = 0 R V R r N + M = R r N
148 136 141 147 3eqtr4d N 2 M = 0 R V R r N R r M = R r N + M
149 148 5 syl N 2 M = 0 R V R r N R r M R r N + M
150 149 3exp N 2 M = 0 R V R r N R r M R r N + M
151 122 150 jaoi N = 1 N 2 M = 0 R V R r N R r M R r N + M
152 101 151 syl N M = 0 R V R r N R r M R r N + M
153 coires1 I dom R ran R I dom R ran R = I dom R ran R dom R ran R
154 resres I dom R ran R dom R ran R = I dom R ran R dom R ran R
155 inidm dom R ran R dom R ran R = dom R ran R
156 155 reseq2i I dom R ran R dom R ran R = I dom R ran R
157 153 154 156 3eqtri I dom R ran R I dom R ran R = I dom R ran R
158 simp1 N = 0 M = 0 R V N = 0
159 158 oveq2d N = 0 M = 0 R V R r N = R r 0
160 32 3ad2ant3 N = 0 M = 0 R V R r 0 = I dom R ran R
161 159 160 eqtrd N = 0 M = 0 R V R r N = I dom R ran R
162 simp2 N = 0 M = 0 R V M = 0
163 162 oveq2d N = 0 M = 0 R V R r M = R r 0
164 163 160 eqtrd N = 0 M = 0 R V R r M = I dom R ran R
165 161 164 coeq12d N = 0 M = 0 R V R r N R r M = I dom R ran R I dom R ran R
166 158 162 oveq12d N = 0 M = 0 R V N + M = 0 + 0
167 00id 0 + 0 = 0
168 167 a1i N = 0 M = 0 R V 0 + 0 = 0
169 166 168 eqtrd N = 0 M = 0 R V N + M = 0
170 169 oveq2d N = 0 M = 0 R V R r N + M = R r 0
171 170 160 eqtrd N = 0 M = 0 R V R r N + M = I dom R ran R
172 157 165 171 3eqtr4a N = 0 M = 0 R V R r N R r M = R r N + M
173 172 5 syl N = 0 M = 0 R V R r N R r M R r N + M
174 173 3exp N = 0 M = 0 R V R r N R r M R r N + M
175 152 174 jaoi N N = 0 M = 0 R V R r N R r M R r N + M
176 3 175 syl N 0 M = 0 R V R r N R r M R r N + M
177 99 176 jaod N 0 M M = 0 R V R r N R r M R r N + M
178 1 177 syl5bi N 0 M 0 R V R r N R r M R r N + M
179 178 3imp N 0 M 0 R V R r N R r M R r N + M