Metamath Proof Explorer


Theorem relexpaddss

Description: The composition of two powers of a relation is a subset of the relation raised to the sum of those exponents. This is equality where R is a relation as shown by relexpaddd or when the sum of the powers isn't 1 as shown by relexpaddg . (Contributed by RP, 3-Jun-2020)

Ref Expression
Assertion relexpaddss N 0 M 0 R V R r N R r M R r N + M

Proof

Step Hyp Ref Expression
1 elnn0 M 0 M M = 0
2 elnn0 N 0 N N = 0
3 2 biimpi N 0 N N = 0
4 relexpaddnn N M R V R r N R r M = R r N + M
5 eqimss R r N R r M = R r N + M R r N R r M R r N + M
6 4 5 syl N M R V R r N R r M R r N + M
7 6 3exp N M R V R r N R r M R r N + M
8 elnn1uz2 M M = 1 M 2
9 relco Rel I dom R ran R R
10 dfrel2 Rel I dom R ran R R I dom R ran R R -1 -1 = I dom R ran R R
11 10 biimpi Rel I dom R ran R R I dom R ran R R -1 -1 = I dom R ran R R
12 9 11 ax-mp I dom R ran R R -1 -1 = I dom R ran R R
13 cnvco I dom R ran R R -1 = R -1 I dom R ran R -1
14 cnvresid I dom R ran R -1 = I dom R ran R
15 14 coeq2i R -1 I dom R ran R -1 = R -1 I dom R ran R
16 coires1 R -1 I dom R ran R = R -1 dom R ran R
17 13 15 16 3eqtri I dom R ran R R -1 = R -1 dom R ran R
18 eqimss I dom R ran R R -1 = R -1 dom R ran R I dom R ran R R -1 R -1 dom R ran R
19 17 18 ax-mp I dom R ran R R -1 R -1 dom R ran R
20 cnvss I dom R ran R R -1 R -1 dom R ran R I dom R ran R R -1 -1 R -1 dom R ran R -1
21 19 20 ax-mp I dom R ran R R -1 -1 R -1 dom R ran R -1
22 resss R -1 dom R ran R R -1
23 cnvss R -1 dom R ran R R -1 R -1 dom R ran R -1 R -1 -1
24 22 23 ax-mp R -1 dom R ran R -1 R -1 -1
25 21 24 sstri I dom R ran R R -1 -1 R -1 -1
26 12 25 eqsstrri I dom R ran R R R -1 -1
27 cnvcnvss R -1 -1 R
28 26 27 sstri I dom R ran R R R
29 28 a1i N = 0 M = 1 R V I dom R ran R R R
30 simp1 N = 0 M = 1 R V N = 0
31 30 oveq2d N = 0 M = 1 R V R r N = R r 0
32 relexp0g R V R r 0 = I dom R ran R
33 32 3ad2ant3 N = 0 M = 1 R V R r 0 = I dom R ran R
34 31 33 eqtrd N = 0 M = 1 R V R r N = I dom R ran R
35 simp2 N = 0 M = 1 R V M = 1
36 35 oveq2d N = 0 M = 1 R V R r M = R r 1
37 relexp1g R V R r 1 = R
38 37 3ad2ant3 N = 0 M = 1 R V R r 1 = R
39 36 38 eqtrd N = 0 M = 1 R V R r M = R
40 34 39 coeq12d N = 0 M = 1 R V R r N R r M = I dom R ran R R
41 30 35 oveq12d N = 0 M = 1 R V N + M = 0 + 1
42 1cnd N = 0 M = 1 R V 1
43 42 addlidd N = 0 M = 1 R V 0 + 1 = 1
44 41 43 eqtrd N = 0 M = 1 R V N + M = 1
45 44 oveq2d N = 0 M = 1 R V R r N + M = R r 1
46 45 38 eqtrd N = 0 M = 1 R V R r N + M = R
47 29 40 46 3sstr4d N = 0 M = 1 R V R r N R r M R r N + M
48 47 3exp N = 0 M = 1 R V R r N R r M R r N + M
49 coires1 R -1 r M I dom R ran R = R -1 r M dom R ran R
50 simp2 N = 0 M 2 R V M 2
51 cnvexg R V R -1 V
52 51 3ad2ant3 N = 0 M 2 R V R -1 V
53 relexpuzrel M 2 R -1 V Rel R -1 r M
54 50 52 53 syl2anc N = 0 M 2 R V Rel R -1 r M
55 eluz2nn M 2 M
56 50 55 syl N = 0 M 2 R V M
57 relexpnndm M R -1 V dom R -1 r M dom R -1
58 56 52 57 syl2anc N = 0 M 2 R V dom R -1 r M dom R -1
59 df-rn ran R = dom R -1
60 ssun2 ran R dom R ran R
61 59 60 eqsstrri dom R -1 dom R ran R
62 58 61 sstrdi N = 0 M 2 R V dom R -1 r M dom R ran R
63 relssres Rel R -1 r M dom R -1 r M dom R ran R R -1 r M dom R ran R = R -1 r M
64 54 62 63 syl2anc N = 0 M 2 R V R -1 r M dom R ran R = R -1 r M
65 49 64 eqtrid N = 0 M 2 R V R -1 r M I dom R ran R = R -1 r M
66 cnvco I dom R ran R R r M -1 = R r M -1 I dom R ran R -1
67 simp3 N = 0 M 2 R V R V
68 eluzge2nn0 M 2 M 0
69 50 68 syl N = 0 M 2 R V M 0
70 67 69 relexpcnvd N = 0 M 2 R V R r M -1 = R -1 r M
71 14 a1i N = 0 M 2 R V I dom R ran R -1 = I dom R ran R
72 70 71 coeq12d N = 0 M 2 R V R r M -1 I dom R ran R -1 = R -1 r M I dom R ran R
73 66 72 eqtrid N = 0 M 2 R V I dom R ran R R r M -1 = R -1 r M I dom R ran R
74 65 73 70 3eqtr4d N = 0 M 2 R V I dom R ran R R r M -1 = R r M -1
75 relco Rel I dom R ran R R r M
76 relexpuzrel M 2 R V Rel R r M
77 76 3adant1 N = 0 M 2 R V Rel R r M
78 cnveqb Rel I dom R ran R R r M Rel R r M I dom R ran R R r M = R r M I dom R ran R R r M -1 = R r M -1
79 75 77 78 sylancr N = 0 M 2 R V I dom R ran R R r M = R r M I dom R ran R R r M -1 = R r M -1
80 74 79 mpbird N = 0 M 2 R V I dom R ran R R r M = R r M
81 simp1 N = 0 M 2 R V N = 0
82 81 oveq2d N = 0 M 2 R V R r N = R r 0
83 32 3ad2ant3 N = 0 M 2 R V R r 0 = I dom R ran R
84 82 83 eqtrd N = 0 M 2 R V R r N = I dom R ran R
85 84 coeq1d N = 0 M 2 R V R r N R r M = I dom R ran R R r M
86 81 oveq1d N = 0 M 2 R V N + M = 0 + M
87 eluzelcn M 2 M
88 50 87 syl N = 0 M 2 R V M
89 88 addlidd N = 0 M 2 R V 0 + M = M
90 86 89 eqtrd N = 0 M 2 R V N + M = M
91 90 oveq2d N = 0 M 2 R V R r N + M = R r M
92 80 85 91 3eqtr4d N = 0 M 2 R V R r N R r M = R r N + M
93 92 5 syl N = 0 M 2 R V R r N R r M R r N + M
94 93 3exp N = 0 M 2 R V R r N R r M R r N + M
95 48 94 jaod N = 0 M = 1 M 2 R V R r N R r M R r N + M
96 8 95 biimtrid N = 0 M R V R r N R r M R r N + M
97 7 96 jaoi N N = 0 M R V R r N R r M R r N + M
98 3 97 syl N 0 M R V R r N R r M R r N + M
99 elnn1uz2 N N = 1 N 2
100 99 biimpi N N = 1 N 2
101 coires1 R I dom R ran R = R dom R ran R
102 resss R dom R ran R R
103 101 102 eqsstri R I dom R ran R R
104 103 a1i N = 1 M = 0 R V R I dom R ran R R
105 simp1 N = 1 M = 0 R V N = 1
106 105 oveq2d N = 1 M = 0 R V R r N = R r 1
107 37 3ad2ant3 N = 1 M = 0 R V R r 1 = R
108 106 107 eqtrd N = 1 M = 0 R V R r N = R
109 simp2 N = 1 M = 0 R V M = 0
110 109 oveq2d N = 1 M = 0 R V R r M = R r 0
111 32 3ad2ant3 N = 1 M = 0 R V R r 0 = I dom R ran R
112 110 111 eqtrd N = 1 M = 0 R V R r M = I dom R ran R
113 108 112 coeq12d N = 1 M = 0 R V R r N R r M = R I dom R ran R
114 105 109 oveq12d N = 1 M = 0 R V N + M = 1 + 0
115 1cnd N = 1 M = 0 R V 1
116 115 addridd N = 1 M = 0 R V 1 + 0 = 1
117 114 116 eqtrd N = 1 M = 0 R V N + M = 1
118 117 oveq2d N = 1 M = 0 R V R r N + M = R r 1
119 118 107 eqtrd N = 1 M = 0 R V R r N + M = R
120 104 113 119 3sstr4d N = 1 M = 0 R V R r N R r M R r N + M
121 120 3exp N = 1 M = 0 R V R r N R r M R r N + M
122 coires1 R r N I dom R ran R = R r N dom R ran R
123 relexpuzrel N 2 R V Rel R r N
124 123 3adant2 N 2 M = 0 R V Rel R r N
125 simp1 N 2 M = 0 R V N 2
126 eluz2nn N 2 N
127 125 126 syl N 2 M = 0 R V N
128 simp3 N 2 M = 0 R V R V
129 relexpnndm N R V dom R r N dom R
130 127 128 129 syl2anc N 2 M = 0 R V dom R r N dom R
131 ssun1 dom R dom R ran R
132 130 131 sstrdi N 2 M = 0 R V dom R r N dom R ran R
133 relssres Rel R r N dom R r N dom R ran R R r N dom R ran R = R r N
134 124 132 133 syl2anc N 2 M = 0 R V R r N dom R ran R = R r N
135 122 134 eqtrid N 2 M = 0 R V R r N I dom R ran R = R r N
136 simp2 N 2 M = 0 R V M = 0
137 136 oveq2d N 2 M = 0 R V R r M = R r 0
138 32 3ad2ant3 N 2 M = 0 R V R r 0 = I dom R ran R
139 137 138 eqtrd N 2 M = 0 R V R r M = I dom R ran R
140 139 coeq2d N 2 M = 0 R V R r N R r M = R r N I dom R ran R
141 136 oveq2d N 2 M = 0 R V N + M = N + 0
142 eluzelcn N 2 N
143 125 142 syl N 2 M = 0 R V N
144 143 addridd N 2 M = 0 R V N + 0 = N
145 141 144 eqtrd N 2 M = 0 R V N + M = N
146 145 oveq2d N 2 M = 0 R V R r N + M = R r N
147 135 140 146 3eqtr4d N 2 M = 0 R V R r N R r M = R r N + M
148 147 5 syl N 2 M = 0 R V R r N R r M R r N + M
149 148 3exp N 2 M = 0 R V R r N R r M R r N + M
150 121 149 jaoi N = 1 N 2 M = 0 R V R r N R r M R r N + M
151 100 150 syl N M = 0 R V R r N R r M R r N + M
152 coires1 I dom R ran R I dom R ran R = I dom R ran R dom R ran R
153 resres I dom R ran R dom R ran R = I dom R ran R dom R ran R
154 inidm dom R ran R dom R ran R = dom R ran R
155 154 reseq2i I dom R ran R dom R ran R = I dom R ran R
156 152 153 155 3eqtri I dom R ran R I dom R ran R = I dom R ran R
157 simp1 N = 0 M = 0 R V N = 0
158 157 oveq2d N = 0 M = 0 R V R r N = R r 0
159 32 3ad2ant3 N = 0 M = 0 R V R r 0 = I dom R ran R
160 158 159 eqtrd N = 0 M = 0 R V R r N = I dom R ran R
161 simp2 N = 0 M = 0 R V M = 0
162 161 oveq2d N = 0 M = 0 R V R r M = R r 0
163 162 159 eqtrd N = 0 M = 0 R V R r M = I dom R ran R
164 160 163 coeq12d N = 0 M = 0 R V R r N R r M = I dom R ran R I dom R ran R
165 157 161 oveq12d N = 0 M = 0 R V N + M = 0 + 0
166 00id 0 + 0 = 0
167 166 a1i N = 0 M = 0 R V 0 + 0 = 0
168 165 167 eqtrd N = 0 M = 0 R V N + M = 0
169 168 oveq2d N = 0 M = 0 R V R r N + M = R r 0
170 169 159 eqtrd N = 0 M = 0 R V R r N + M = I dom R ran R
171 156 164 170 3eqtr4a N = 0 M = 0 R V R r N R r M = R r N + M
172 171 5 syl N = 0 M = 0 R V R r N R r M R r N + M
173 172 3exp N = 0 M = 0 R V R r N R r M R r N + M
174 151 173 jaoi N N = 0 M = 0 R V R r N R r M R r N + M
175 3 174 syl N 0 M = 0 R V R r N R r M R r N + M
176 98 175 jaod N 0 M M = 0 R V R r N R r M R r N + M
177 1 176 biimtrid N 0 M 0 R V R r N R r M R r N + M
178 177 3imp N 0 M 0 R V R r N R r M R r N + M