Metamath Proof Explorer


Theorem relexpaddss

Description: The composition of two powers of a relation is a subset of the relation raised to the sum of those exponents. This is equality where R is a relation as shown by relexpaddd or when the sum of the powers isn't 1 as shown by relexpaddg . (Contributed by RP, 3-Jun-2020)

Ref Expression
Assertion relexpaddss N0M0RVRrNRrMRrN+M

Proof

Step Hyp Ref Expression
1 elnn0 M0MM=0
2 elnn0 N0NN=0
3 2 biimpi N0NN=0
4 relexpaddnn NMRVRrNRrM=RrN+M
5 eqimss RrNRrM=RrN+MRrNRrMRrN+M
6 4 5 syl NMRVRrNRrMRrN+M
7 6 3exp NMRVRrNRrMRrN+M
8 elnn1uz2 MM=1M2
9 relco RelIdomRranRR
10 dfrel2 RelIdomRranRRIdomRranRR-1-1=IdomRranRR
11 10 biimpi RelIdomRranRRIdomRranRR-1-1=IdomRranRR
12 9 11 ax-mp IdomRranRR-1-1=IdomRranRR
13 cnvco IdomRranRR-1=R-1IdomRranR-1
14 cnvresid IdomRranR-1=IdomRranR
15 14 coeq2i R-1IdomRranR-1=R-1IdomRranR
16 coires1 R-1IdomRranR=R-1domRranR
17 13 15 16 3eqtri IdomRranRR-1=R-1domRranR
18 eqimss IdomRranRR-1=R-1domRranRIdomRranRR-1R-1domRranR
19 17 18 ax-mp IdomRranRR-1R-1domRranR
20 cnvss IdomRranRR-1R-1domRranRIdomRranRR-1-1R-1domRranR-1
21 19 20 ax-mp IdomRranRR-1-1R-1domRranR-1
22 resss R-1domRranRR-1
23 cnvss R-1domRranRR-1R-1domRranR-1R-1-1
24 22 23 ax-mp R-1domRranR-1R-1-1
25 21 24 sstri IdomRranRR-1-1R-1-1
26 12 25 eqsstrri IdomRranRRR-1-1
27 cnvcnvss R-1-1R
28 26 27 sstri IdomRranRRR
29 28 a1i N=0M=1RVIdomRranRRR
30 simp1 N=0M=1RVN=0
31 30 oveq2d N=0M=1RVRrN=Rr0
32 relexp0g RVRr0=IdomRranR
33 32 3ad2ant3 N=0M=1RVRr0=IdomRranR
34 31 33 eqtrd N=0M=1RVRrN=IdomRranR
35 simp2 N=0M=1RVM=1
36 35 oveq2d N=0M=1RVRrM=Rr1
37 relexp1g RVRr1=R
38 37 3ad2ant3 N=0M=1RVRr1=R
39 36 38 eqtrd N=0M=1RVRrM=R
40 34 39 coeq12d N=0M=1RVRrNRrM=IdomRranRR
41 30 35 oveq12d N=0M=1RVN+M=0+1
42 1cnd N=0M=1RV1
43 42 addlidd N=0M=1RV0+1=1
44 41 43 eqtrd N=0M=1RVN+M=1
45 44 oveq2d N=0M=1RVRrN+M=Rr1
46 45 38 eqtrd N=0M=1RVRrN+M=R
47 29 40 46 3sstr4d N=0M=1RVRrNRrMRrN+M
48 47 3exp N=0M=1RVRrNRrMRrN+M
49 coires1 R-1rMIdomRranR=R-1rMdomRranR
50 simp2 N=0M2RVM2
51 cnvexg RVR-1V
52 51 3ad2ant3 N=0M2RVR-1V
53 relexpuzrel M2R-1VRelR-1rM
54 50 52 53 syl2anc N=0M2RVRelR-1rM
55 eluz2nn M2M
56 50 55 syl N=0M2RVM
57 relexpnndm MR-1VdomR-1rMdomR-1
58 56 52 57 syl2anc N=0M2RVdomR-1rMdomR-1
59 df-rn ranR=domR-1
60 ssun2 ranRdomRranR
61 59 60 eqsstrri domR-1domRranR
62 58 61 sstrdi N=0M2RVdomR-1rMdomRranR
63 relssres RelR-1rMdomR-1rMdomRranRR-1rMdomRranR=R-1rM
64 54 62 63 syl2anc N=0M2RVR-1rMdomRranR=R-1rM
65 49 64 eqtrid N=0M2RVR-1rMIdomRranR=R-1rM
66 cnvco IdomRranRRrM-1=RrM-1IdomRranR-1
67 simp3 N=0M2RVRV
68 eluzge2nn0 M2M0
69 50 68 syl N=0M2RVM0
70 67 69 relexpcnvd N=0M2RVRrM-1=R-1rM
71 14 a1i N=0M2RVIdomRranR-1=IdomRranR
72 70 71 coeq12d N=0M2RVRrM-1IdomRranR-1=R-1rMIdomRranR
73 66 72 eqtrid N=0M2RVIdomRranRRrM-1=R-1rMIdomRranR
74 65 73 70 3eqtr4d N=0M2RVIdomRranRRrM-1=RrM-1
75 relco RelIdomRranRRrM
76 relexpuzrel M2RVRelRrM
77 76 3adant1 N=0M2RVRelRrM
78 cnveqb RelIdomRranRRrMRelRrMIdomRranRRrM=RrMIdomRranRRrM-1=RrM-1
79 75 77 78 sylancr N=0M2RVIdomRranRRrM=RrMIdomRranRRrM-1=RrM-1
80 74 79 mpbird N=0M2RVIdomRranRRrM=RrM
81 simp1 N=0M2RVN=0
82 81 oveq2d N=0M2RVRrN=Rr0
83 32 3ad2ant3 N=0M2RVRr0=IdomRranR
84 82 83 eqtrd N=0M2RVRrN=IdomRranR
85 84 coeq1d N=0M2RVRrNRrM=IdomRranRRrM
86 81 oveq1d N=0M2RVN+M=0+M
87 eluzelcn M2M
88 50 87 syl N=0M2RVM
89 88 addlidd N=0M2RV0+M=M
90 86 89 eqtrd N=0M2RVN+M=M
91 90 oveq2d N=0M2RVRrN+M=RrM
92 80 85 91 3eqtr4d N=0M2RVRrNRrM=RrN+M
93 92 5 syl N=0M2RVRrNRrMRrN+M
94 93 3exp N=0M2RVRrNRrMRrN+M
95 48 94 jaod N=0M=1M2RVRrNRrMRrN+M
96 8 95 biimtrid N=0MRVRrNRrMRrN+M
97 7 96 jaoi NN=0MRVRrNRrMRrN+M
98 3 97 syl N0MRVRrNRrMRrN+M
99 elnn1uz2 NN=1N2
100 99 biimpi NN=1N2
101 coires1 RIdomRranR=RdomRranR
102 resss RdomRranRR
103 101 102 eqsstri RIdomRranRR
104 103 a1i N=1M=0RVRIdomRranRR
105 simp1 N=1M=0RVN=1
106 105 oveq2d N=1M=0RVRrN=Rr1
107 37 3ad2ant3 N=1M=0RVRr1=R
108 106 107 eqtrd N=1M=0RVRrN=R
109 simp2 N=1M=0RVM=0
110 109 oveq2d N=1M=0RVRrM=Rr0
111 32 3ad2ant3 N=1M=0RVRr0=IdomRranR
112 110 111 eqtrd N=1M=0RVRrM=IdomRranR
113 108 112 coeq12d N=1M=0RVRrNRrM=RIdomRranR
114 105 109 oveq12d N=1M=0RVN+M=1+0
115 1cnd N=1M=0RV1
116 115 addridd N=1M=0RV1+0=1
117 114 116 eqtrd N=1M=0RVN+M=1
118 117 oveq2d N=1M=0RVRrN+M=Rr1
119 118 107 eqtrd N=1M=0RVRrN+M=R
120 104 113 119 3sstr4d N=1M=0RVRrNRrMRrN+M
121 120 3exp N=1M=0RVRrNRrMRrN+M
122 coires1 RrNIdomRranR=RrNdomRranR
123 relexpuzrel N2RVRelRrN
124 123 3adant2 N2M=0RVRelRrN
125 simp1 N2M=0RVN2
126 eluz2nn N2N
127 125 126 syl N2M=0RVN
128 simp3 N2M=0RVRV
129 relexpnndm NRVdomRrNdomR
130 127 128 129 syl2anc N2M=0RVdomRrNdomR
131 ssun1 domRdomRranR
132 130 131 sstrdi N2M=0RVdomRrNdomRranR
133 relssres RelRrNdomRrNdomRranRRrNdomRranR=RrN
134 124 132 133 syl2anc N2M=0RVRrNdomRranR=RrN
135 122 134 eqtrid N2M=0RVRrNIdomRranR=RrN
136 simp2 N2M=0RVM=0
137 136 oveq2d N2M=0RVRrM=Rr0
138 32 3ad2ant3 N2M=0RVRr0=IdomRranR
139 137 138 eqtrd N2M=0RVRrM=IdomRranR
140 139 coeq2d N2M=0RVRrNRrM=RrNIdomRranR
141 136 oveq2d N2M=0RVN+M=N+0
142 eluzelcn N2N
143 125 142 syl N2M=0RVN
144 143 addridd N2M=0RVN+0=N
145 141 144 eqtrd N2M=0RVN+M=N
146 145 oveq2d N2M=0RVRrN+M=RrN
147 135 140 146 3eqtr4d N2M=0RVRrNRrM=RrN+M
148 147 5 syl N2M=0RVRrNRrMRrN+M
149 148 3exp N2M=0RVRrNRrMRrN+M
150 121 149 jaoi N=1N2M=0RVRrNRrMRrN+M
151 100 150 syl NM=0RVRrNRrMRrN+M
152 coires1 IdomRranRIdomRranR=IdomRranRdomRranR
153 resres IdomRranRdomRranR=IdomRranRdomRranR
154 inidm domRranRdomRranR=domRranR
155 154 reseq2i IdomRranRdomRranR=IdomRranR
156 152 153 155 3eqtri IdomRranRIdomRranR=IdomRranR
157 simp1 N=0M=0RVN=0
158 157 oveq2d N=0M=0RVRrN=Rr0
159 32 3ad2ant3 N=0M=0RVRr0=IdomRranR
160 158 159 eqtrd N=0M=0RVRrN=IdomRranR
161 simp2 N=0M=0RVM=0
162 161 oveq2d N=0M=0RVRrM=Rr0
163 162 159 eqtrd N=0M=0RVRrM=IdomRranR
164 160 163 coeq12d N=0M=0RVRrNRrM=IdomRranRIdomRranR
165 157 161 oveq12d N=0M=0RVN+M=0+0
166 00id 0+0=0
167 166 a1i N=0M=0RV0+0=0
168 165 167 eqtrd N=0M=0RVN+M=0
169 168 oveq2d N=0M=0RVRrN+M=Rr0
170 169 159 eqtrd N=0M=0RVRrN+M=IdomRranR
171 156 164 170 3eqtr4a N=0M=0RVRrNRrM=RrN+M
172 171 5 syl N=0M=0RVRrNRrMRrN+M
173 172 3exp N=0M=0RVRrNRrMRrN+M
174 151 173 jaoi NN=0M=0RVRrNRrMRrN+M
175 3 174 syl N0M=0RVRrNRrMRrN+M
176 98 175 jaod N0MM=0RVRrNRrMRrN+M
177 1 176 biimtrid N0M0RVRrNRrMRrN+M
178 177 3imp N0M0RVRrNRrMRrN+M