| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mptiunrelexp.def |
|
| 2 |
|
ovexd |
|
| 3 |
|
simprlr |
|
| 4 |
|
simpll2 |
|
| 5 |
3 4
|
eleqtrd |
|
| 6 |
|
simpll3 |
|
| 7 |
|
simprll |
|
| 8 |
7 4
|
eleqtrd |
|
| 9 |
|
eluznn0 |
|
| 10 |
6 8 9
|
syl2anc |
|
| 11 |
|
uzaddcl |
|
| 12 |
5 10 11
|
syl2anc |
|
| 13 |
|
simplr |
|
| 14 |
12 13 4
|
3eltr4d |
|
| 15 |
|
vex |
|
| 16 |
|
vex |
|
| 17 |
|
vex |
|
| 18 |
|
brcogw |
|
| 19 |
18
|
ex |
|
| 20 |
15 16 17 19
|
mp3an |
|
| 21 |
|
simpll3 |
|
| 22 |
|
simprr |
|
| 23 |
|
simpll2 |
|
| 24 |
22 23
|
eleqtrd |
|
| 25 |
|
eluznn0 |
|
| 26 |
21 24 25
|
syl2anc |
|
| 27 |
|
simprl |
|
| 28 |
27 23
|
eleqtrd |
|
| 29 |
21 28 9
|
syl2anc |
|
| 30 |
|
simpll1 |
|
| 31 |
|
relexpaddss |
|
| 32 |
26 29 30 31
|
syl3anc |
|
| 33 |
|
simplr |
|
| 34 |
33
|
oveq2d |
|
| 35 |
32 34
|
sseqtrrd |
|
| 36 |
35
|
ssbrd |
|
| 37 |
20 36
|
syl5 |
|
| 38 |
37
|
impr |
|
| 39 |
14 38
|
jca |
|
| 40 |
39
|
ex |
|
| 41 |
2 40
|
spcimedv |
|
| 42 |
41
|
exlimdvv |
|
| 43 |
|
reeanv |
|
| 44 |
|
r2ex |
|
| 45 |
43 44
|
bitr3i |
|
| 46 |
|
df-rex |
|
| 47 |
42 45 46
|
3imtr4g |
|
| 48 |
47
|
alrimiv |
|
| 49 |
48
|
alrimiv |
|
| 50 |
49
|
alrimiv |
|
| 51 |
|
cotr |
|
| 52 |
1
|
briunov2uz |
|
| 53 |
|
oveq2 |
|
| 54 |
53
|
breqd |
|
| 55 |
54
|
cbvrexvw |
|
| 56 |
52 55
|
bitrdi |
|
| 57 |
1
|
briunov2uz |
|
| 58 |
|
oveq2 |
|
| 59 |
58
|
breqd |
|
| 60 |
59
|
cbvrexvw |
|
| 61 |
57 60
|
bitrdi |
|
| 62 |
56 61
|
anbi12d |
|
| 63 |
1
|
briunov2uz |
|
| 64 |
62 63
|
imbi12d |
|
| 65 |
64
|
albidv |
|
| 66 |
65
|
albidv |
|
| 67 |
66
|
albidv |
|
| 68 |
51 67
|
bitrid |
|
| 69 |
68
|
biimprd |
|
| 70 |
69
|
3adant3 |
|
| 71 |
50 70
|
mpd |
|