Metamath Proof Explorer


Theorem uzaddcl

Description: Addition closure law for an upper set of integers. (Contributed by NM, 4-Jun-2006)

Ref Expression
Assertion uzaddcl NMK0N+KM

Proof

Step Hyp Ref Expression
1 eluzelcn NMN
2 nn0cn k0k
3 ax-1cn 1
4 addass Nk1N+k+1=N+k+1
5 3 4 mp3an3 NkN+k+1=N+k+1
6 1 2 5 syl2anr k0NMN+k+1=N+k+1
7 6 adantr k0NMN+kMN+k+1=N+k+1
8 peano2uz N+kMN+k+1M
9 8 adantl k0NMN+kMN+k+1M
10 7 9 eqeltrrd k0NMN+kMN+k+1M
11 10 exp31 k0NMN+kMN+k+1M
12 11 a2d k0NMN+kMNMN+k+1M
13 1 addridd NMN+0=N
14 13 eleq1d NMN+0MNM
15 14 ibir NMN+0M
16 oveq2 j=0N+j=N+0
17 16 eleq1d j=0N+jMN+0M
18 17 imbi2d j=0NMN+jMNMN+0M
19 oveq2 j=kN+j=N+k
20 19 eleq1d j=kN+jMN+kM
21 20 imbi2d j=kNMN+jMNMN+kM
22 oveq2 j=k+1N+j=N+k+1
23 22 eleq1d j=k+1N+jMN+k+1M
24 23 imbi2d j=k+1NMN+jMNMN+k+1M
25 oveq2 j=KN+j=N+K
26 25 eleq1d j=KN+jMN+KM
27 26 imbi2d j=KNMN+jMNMN+KM
28 12 15 18 21 24 27 nn0indALT K0NMN+KM
29 28 impcom NMK0N+KM