| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							eluzelcn | 
							⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  𝑁  ∈  ℂ )  | 
						
						
							| 2 | 
							
								
							 | 
							nn0cn | 
							⊢ ( 𝑘  ∈  ℕ0  →  𝑘  ∈  ℂ )  | 
						
						
							| 3 | 
							
								
							 | 
							ax-1cn | 
							⊢ 1  ∈  ℂ  | 
						
						
							| 4 | 
							
								
							 | 
							addass | 
							⊢ ( ( 𝑁  ∈  ℂ  ∧  𝑘  ∈  ℂ  ∧  1  ∈  ℂ )  →  ( ( 𝑁  +  𝑘 )  +  1 )  =  ( 𝑁  +  ( 𝑘  +  1 ) ) )  | 
						
						
							| 5 | 
							
								3 4
							 | 
							mp3an3 | 
							⊢ ( ( 𝑁  ∈  ℂ  ∧  𝑘  ∈  ℂ )  →  ( ( 𝑁  +  𝑘 )  +  1 )  =  ( 𝑁  +  ( 𝑘  +  1 ) ) )  | 
						
						
							| 6 | 
							
								1 2 5
							 | 
							syl2anr | 
							⊢ ( ( 𝑘  ∈  ℕ0  ∧  𝑁  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( ( 𝑁  +  𝑘 )  +  1 )  =  ( 𝑁  +  ( 𝑘  +  1 ) ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							adantr | 
							⊢ ( ( ( 𝑘  ∈  ℕ0  ∧  𝑁  ∈  ( ℤ≥ ‘ 𝑀 ) )  ∧  ( 𝑁  +  𝑘 )  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( ( 𝑁  +  𝑘 )  +  1 )  =  ( 𝑁  +  ( 𝑘  +  1 ) ) )  | 
						
						
							| 8 | 
							
								
							 | 
							peano2uz | 
							⊢ ( ( 𝑁  +  𝑘 )  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( ( 𝑁  +  𝑘 )  +  1 )  ∈  ( ℤ≥ ‘ 𝑀 ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							adantl | 
							⊢ ( ( ( 𝑘  ∈  ℕ0  ∧  𝑁  ∈  ( ℤ≥ ‘ 𝑀 ) )  ∧  ( 𝑁  +  𝑘 )  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( ( 𝑁  +  𝑘 )  +  1 )  ∈  ( ℤ≥ ‘ 𝑀 ) )  | 
						
						
							| 10 | 
							
								7 9
							 | 
							eqeltrrd | 
							⊢ ( ( ( 𝑘  ∈  ℕ0  ∧  𝑁  ∈  ( ℤ≥ ‘ 𝑀 ) )  ∧  ( 𝑁  +  𝑘 )  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( 𝑁  +  ( 𝑘  +  1 ) )  ∈  ( ℤ≥ ‘ 𝑀 ) )  | 
						
						
							| 11 | 
							
								10
							 | 
							exp31 | 
							⊢ ( 𝑘  ∈  ℕ0  →  ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( ( 𝑁  +  𝑘 )  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( 𝑁  +  ( 𝑘  +  1 ) )  ∈  ( ℤ≥ ‘ 𝑀 ) ) ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							a2d | 
							⊢ ( 𝑘  ∈  ℕ0  →  ( ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( 𝑁  +  𝑘 )  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( 𝑁  +  ( 𝑘  +  1 ) )  ∈  ( ℤ≥ ‘ 𝑀 ) ) ) )  | 
						
						
							| 13 | 
							
								1
							 | 
							addridd | 
							⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( 𝑁  +  0 )  =  𝑁 )  | 
						
						
							| 14 | 
							
								13
							 | 
							eleq1d | 
							⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( ( 𝑁  +  0 )  ∈  ( ℤ≥ ‘ 𝑀 )  ↔  𝑁  ∈  ( ℤ≥ ‘ 𝑀 ) ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							ibir | 
							⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( 𝑁  +  0 )  ∈  ( ℤ≥ ‘ 𝑀 ) )  | 
						
						
							| 16 | 
							
								
							 | 
							oveq2 | 
							⊢ ( 𝑗  =  0  →  ( 𝑁  +  𝑗 )  =  ( 𝑁  +  0 ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							eleq1d | 
							⊢ ( 𝑗  =  0  →  ( ( 𝑁  +  𝑗 )  ∈  ( ℤ≥ ‘ 𝑀 )  ↔  ( 𝑁  +  0 )  ∈  ( ℤ≥ ‘ 𝑀 ) ) )  | 
						
						
							| 18 | 
							
								17
							 | 
							imbi2d | 
							⊢ ( 𝑗  =  0  →  ( ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( 𝑁  +  𝑗 )  ∈  ( ℤ≥ ‘ 𝑀 ) )  ↔  ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( 𝑁  +  0 )  ∈  ( ℤ≥ ‘ 𝑀 ) ) ) )  | 
						
						
							| 19 | 
							
								
							 | 
							oveq2 | 
							⊢ ( 𝑗  =  𝑘  →  ( 𝑁  +  𝑗 )  =  ( 𝑁  +  𝑘 ) )  | 
						
						
							| 20 | 
							
								19
							 | 
							eleq1d | 
							⊢ ( 𝑗  =  𝑘  →  ( ( 𝑁  +  𝑗 )  ∈  ( ℤ≥ ‘ 𝑀 )  ↔  ( 𝑁  +  𝑘 )  ∈  ( ℤ≥ ‘ 𝑀 ) ) )  | 
						
						
							| 21 | 
							
								20
							 | 
							imbi2d | 
							⊢ ( 𝑗  =  𝑘  →  ( ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( 𝑁  +  𝑗 )  ∈  ( ℤ≥ ‘ 𝑀 ) )  ↔  ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( 𝑁  +  𝑘 )  ∈  ( ℤ≥ ‘ 𝑀 ) ) ) )  | 
						
						
							| 22 | 
							
								
							 | 
							oveq2 | 
							⊢ ( 𝑗  =  ( 𝑘  +  1 )  →  ( 𝑁  +  𝑗 )  =  ( 𝑁  +  ( 𝑘  +  1 ) ) )  | 
						
						
							| 23 | 
							
								22
							 | 
							eleq1d | 
							⊢ ( 𝑗  =  ( 𝑘  +  1 )  →  ( ( 𝑁  +  𝑗 )  ∈  ( ℤ≥ ‘ 𝑀 )  ↔  ( 𝑁  +  ( 𝑘  +  1 ) )  ∈  ( ℤ≥ ‘ 𝑀 ) ) )  | 
						
						
							| 24 | 
							
								23
							 | 
							imbi2d | 
							⊢ ( 𝑗  =  ( 𝑘  +  1 )  →  ( ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( 𝑁  +  𝑗 )  ∈  ( ℤ≥ ‘ 𝑀 ) )  ↔  ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( 𝑁  +  ( 𝑘  +  1 ) )  ∈  ( ℤ≥ ‘ 𝑀 ) ) ) )  | 
						
						
							| 25 | 
							
								
							 | 
							oveq2 | 
							⊢ ( 𝑗  =  𝐾  →  ( 𝑁  +  𝑗 )  =  ( 𝑁  +  𝐾 ) )  | 
						
						
							| 26 | 
							
								25
							 | 
							eleq1d | 
							⊢ ( 𝑗  =  𝐾  →  ( ( 𝑁  +  𝑗 )  ∈  ( ℤ≥ ‘ 𝑀 )  ↔  ( 𝑁  +  𝐾 )  ∈  ( ℤ≥ ‘ 𝑀 ) ) )  | 
						
						
							| 27 | 
							
								26
							 | 
							imbi2d | 
							⊢ ( 𝑗  =  𝐾  →  ( ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( 𝑁  +  𝑗 )  ∈  ( ℤ≥ ‘ 𝑀 ) )  ↔  ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( 𝑁  +  𝐾 )  ∈  ( ℤ≥ ‘ 𝑀 ) ) ) )  | 
						
						
							| 28 | 
							
								12 15 18 21 24 27
							 | 
							nn0indALT | 
							⊢ ( 𝐾  ∈  ℕ0  →  ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( 𝑁  +  𝐾 )  ∈  ( ℤ≥ ‘ 𝑀 ) ) )  | 
						
						
							| 29 | 
							
								28
							 | 
							impcom | 
							⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  ∧  𝐾  ∈  ℕ0 )  →  ( 𝑁  +  𝐾 )  ∈  ( ℤ≥ ‘ 𝑀 ) )  |