Metamath Proof Explorer


Theorem spcimedv

Description: Restricted existential specialization, using implicit substitution. (Contributed by Mario Carneiro, 4-Jan-2017)

Ref Expression
Hypotheses spcimdv.1 φAB
spcimedv.2 φx=Aχψ
Assertion spcimedv φχxψ

Proof

Step Hyp Ref Expression
1 spcimdv.1 φAB
2 spcimedv.2 φx=Aχψ
3 2 con3d φx=A¬ψ¬χ
4 1 3 spcimdv φx¬ψ¬χ
5 4 con2d φχ¬x¬ψ
6 df-ex xψ¬x¬ψ
7 5 6 imbitrrdi φχxψ