Metamath Proof Explorer


Theorem cnveqb

Description: Equality theorem for converse. (Contributed by FL, 19-Sep-2011)

Ref Expression
Assertion cnveqb Rel A Rel B A = B A -1 = B -1

Proof

Step Hyp Ref Expression
1 cnveq A = B A -1 = B -1
2 dfrel2 Rel A A -1 -1 = A
3 dfrel2 Rel B B -1 -1 = B
4 cnveq A -1 = B -1 A -1 -1 = B -1 -1
5 eqeq2 B = B -1 -1 A -1 -1 = B A -1 -1 = B -1 -1
6 4 5 syl5ibr B = B -1 -1 A -1 = B -1 A -1 -1 = B
7 6 eqcoms B -1 -1 = B A -1 = B -1 A -1 -1 = B
8 3 7 sylbi Rel B A -1 = B -1 A -1 -1 = B
9 eqeq1 A = A -1 -1 A = B A -1 -1 = B
10 9 imbi2d A = A -1 -1 A -1 = B -1 A = B A -1 = B -1 A -1 -1 = B
11 8 10 syl5ibr A = A -1 -1 Rel B A -1 = B -1 A = B
12 11 eqcoms A -1 -1 = A Rel B A -1 = B -1 A = B
13 2 12 sylbi Rel A Rel B A -1 = B -1 A = B
14 13 imp Rel A Rel B A -1 = B -1 A = B
15 1 14 impbid2 Rel A Rel B A = B A -1 = B -1