| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cnveq |
⊢ ( 𝐴 = 𝐵 → ◡ 𝐴 = ◡ 𝐵 ) |
| 2 |
|
dfrel2 |
⊢ ( Rel 𝐴 ↔ ◡ ◡ 𝐴 = 𝐴 ) |
| 3 |
|
dfrel2 |
⊢ ( Rel 𝐵 ↔ ◡ ◡ 𝐵 = 𝐵 ) |
| 4 |
|
cnveq |
⊢ ( ◡ 𝐴 = ◡ 𝐵 → ◡ ◡ 𝐴 = ◡ ◡ 𝐵 ) |
| 5 |
|
eqeq2 |
⊢ ( 𝐵 = ◡ ◡ 𝐵 → ( ◡ ◡ 𝐴 = 𝐵 ↔ ◡ ◡ 𝐴 = ◡ ◡ 𝐵 ) ) |
| 6 |
4 5
|
imbitrrid |
⊢ ( 𝐵 = ◡ ◡ 𝐵 → ( ◡ 𝐴 = ◡ 𝐵 → ◡ ◡ 𝐴 = 𝐵 ) ) |
| 7 |
6
|
eqcoms |
⊢ ( ◡ ◡ 𝐵 = 𝐵 → ( ◡ 𝐴 = ◡ 𝐵 → ◡ ◡ 𝐴 = 𝐵 ) ) |
| 8 |
3 7
|
sylbi |
⊢ ( Rel 𝐵 → ( ◡ 𝐴 = ◡ 𝐵 → ◡ ◡ 𝐴 = 𝐵 ) ) |
| 9 |
|
eqeq1 |
⊢ ( 𝐴 = ◡ ◡ 𝐴 → ( 𝐴 = 𝐵 ↔ ◡ ◡ 𝐴 = 𝐵 ) ) |
| 10 |
9
|
imbi2d |
⊢ ( 𝐴 = ◡ ◡ 𝐴 → ( ( ◡ 𝐴 = ◡ 𝐵 → 𝐴 = 𝐵 ) ↔ ( ◡ 𝐴 = ◡ 𝐵 → ◡ ◡ 𝐴 = 𝐵 ) ) ) |
| 11 |
8 10
|
imbitrrid |
⊢ ( 𝐴 = ◡ ◡ 𝐴 → ( Rel 𝐵 → ( ◡ 𝐴 = ◡ 𝐵 → 𝐴 = 𝐵 ) ) ) |
| 12 |
11
|
eqcoms |
⊢ ( ◡ ◡ 𝐴 = 𝐴 → ( Rel 𝐵 → ( ◡ 𝐴 = ◡ 𝐵 → 𝐴 = 𝐵 ) ) ) |
| 13 |
2 12
|
sylbi |
⊢ ( Rel 𝐴 → ( Rel 𝐵 → ( ◡ 𝐴 = ◡ 𝐵 → 𝐴 = 𝐵 ) ) ) |
| 14 |
13
|
imp |
⊢ ( ( Rel 𝐴 ∧ Rel 𝐵 ) → ( ◡ 𝐴 = ◡ 𝐵 → 𝐴 = 𝐵 ) ) |
| 15 |
1 14
|
impbid2 |
⊢ ( ( Rel 𝐴 ∧ Rel 𝐵 ) → ( 𝐴 = 𝐵 ↔ ◡ 𝐴 = ◡ 𝐵 ) ) |