Metamath Proof Explorer


Theorem relexpcnvd

Description: Commutation of converse and relation exponentiation. (Contributed by Drahflow, 12-Nov-2015) (Revised by RP, 30-May-2020) (Revised by AV, 12-Jul-2024)

Ref Expression
Hypotheses relexpcnvd.1
|- ( ph -> R e. V )
relexpcnvd.2
|- ( ph -> N e. NN0 )
Assertion relexpcnvd
|- ( ph -> `' ( R ^r N ) = ( `' R ^r N ) )

Proof

Step Hyp Ref Expression
1 relexpcnvd.1
 |-  ( ph -> R e. V )
2 relexpcnvd.2
 |-  ( ph -> N e. NN0 )
3 relexpcnv
 |-  ( ( N e. NN0 /\ R e. V ) -> `' ( R ^r N ) = ( `' R ^r N ) )
4 2 1 3 syl2anc
 |-  ( ph -> `' ( R ^r N ) = ( `' R ^r N ) )