Database
REAL AND COMPLEX NUMBERS
Reflexive and transitive closures of relations
Exponentiation of relations
relexpcnvd
Metamath Proof Explorer
Description: Commutation of converse and relation exponentiation. (Contributed by Drahflow , 12-Nov-2015) (Revised by RP , 30-May-2020) (Revised by AV , 12-Jul-2024)
Ref
Expression
Hypotheses
relexpcnvd.1
⊢ ( 𝜑 → 𝑅 ∈ 𝑉 )
relexpcnvd.2
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 )
Assertion
relexpcnvd
⊢ ( 𝜑 → ◡ ( 𝑅 ↑𝑟 𝑁 ) = ( ◡ 𝑅 ↑𝑟 𝑁 ) )
Proof
Step
Hyp
Ref
Expression
1
relexpcnvd.1
⊢ ( 𝜑 → 𝑅 ∈ 𝑉 )
2
relexpcnvd.2
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 )
3
relexpcnv
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ) → ◡ ( 𝑅 ↑𝑟 𝑁 ) = ( ◡ 𝑅 ↑𝑟 𝑁 ) )
4
2 1 3
syl2anc
⊢ ( 𝜑 → ◡ ( 𝑅 ↑𝑟 𝑁 ) = ( ◡ 𝑅 ↑𝑟 𝑁 ) )