Metamath Proof Explorer


Theorem relexpcnvd

Description: Commutation of converse and relation exponentiation. (Contributed by Drahflow, 12-Nov-2015) (Revised by RP, 30-May-2020) (Revised by AV, 12-Jul-2024)

Ref Expression
Hypotheses relexpcnvd.1 ( 𝜑𝑅𝑉 )
relexpcnvd.2 ( 𝜑𝑁 ∈ ℕ0 )
Assertion relexpcnvd ( 𝜑 ( 𝑅𝑟 𝑁 ) = ( 𝑅𝑟 𝑁 ) )

Proof

Step Hyp Ref Expression
1 relexpcnvd.1 ( 𝜑𝑅𝑉 )
2 relexpcnvd.2 ( 𝜑𝑁 ∈ ℕ0 )
3 relexpcnv ( ( 𝑁 ∈ ℕ0𝑅𝑉 ) → ( 𝑅𝑟 𝑁 ) = ( 𝑅𝑟 𝑁 ) )
4 2 1 3 syl2anc ( 𝜑 ( 𝑅𝑟 𝑁 ) = ( 𝑅𝑟 𝑁 ) )