| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elnn0 |
|- ( N e. NN0 <-> ( N e. NN \/ N = 0 ) ) |
| 2 |
|
oveq2 |
|- ( n = 1 -> ( R ^r n ) = ( R ^r 1 ) ) |
| 3 |
2
|
cnveqd |
|- ( n = 1 -> `' ( R ^r n ) = `' ( R ^r 1 ) ) |
| 4 |
|
oveq2 |
|- ( n = 1 -> ( `' R ^r n ) = ( `' R ^r 1 ) ) |
| 5 |
3 4
|
eqeq12d |
|- ( n = 1 -> ( `' ( R ^r n ) = ( `' R ^r n ) <-> `' ( R ^r 1 ) = ( `' R ^r 1 ) ) ) |
| 6 |
5
|
imbi2d |
|- ( n = 1 -> ( ( R e. V -> `' ( R ^r n ) = ( `' R ^r n ) ) <-> ( R e. V -> `' ( R ^r 1 ) = ( `' R ^r 1 ) ) ) ) |
| 7 |
|
oveq2 |
|- ( n = m -> ( R ^r n ) = ( R ^r m ) ) |
| 8 |
7
|
cnveqd |
|- ( n = m -> `' ( R ^r n ) = `' ( R ^r m ) ) |
| 9 |
|
oveq2 |
|- ( n = m -> ( `' R ^r n ) = ( `' R ^r m ) ) |
| 10 |
8 9
|
eqeq12d |
|- ( n = m -> ( `' ( R ^r n ) = ( `' R ^r n ) <-> `' ( R ^r m ) = ( `' R ^r m ) ) ) |
| 11 |
10
|
imbi2d |
|- ( n = m -> ( ( R e. V -> `' ( R ^r n ) = ( `' R ^r n ) ) <-> ( R e. V -> `' ( R ^r m ) = ( `' R ^r m ) ) ) ) |
| 12 |
|
oveq2 |
|- ( n = ( m + 1 ) -> ( R ^r n ) = ( R ^r ( m + 1 ) ) ) |
| 13 |
12
|
cnveqd |
|- ( n = ( m + 1 ) -> `' ( R ^r n ) = `' ( R ^r ( m + 1 ) ) ) |
| 14 |
|
oveq2 |
|- ( n = ( m + 1 ) -> ( `' R ^r n ) = ( `' R ^r ( m + 1 ) ) ) |
| 15 |
13 14
|
eqeq12d |
|- ( n = ( m + 1 ) -> ( `' ( R ^r n ) = ( `' R ^r n ) <-> `' ( R ^r ( m + 1 ) ) = ( `' R ^r ( m + 1 ) ) ) ) |
| 16 |
15
|
imbi2d |
|- ( n = ( m + 1 ) -> ( ( R e. V -> `' ( R ^r n ) = ( `' R ^r n ) ) <-> ( R e. V -> `' ( R ^r ( m + 1 ) ) = ( `' R ^r ( m + 1 ) ) ) ) ) |
| 17 |
|
oveq2 |
|- ( n = N -> ( R ^r n ) = ( R ^r N ) ) |
| 18 |
17
|
cnveqd |
|- ( n = N -> `' ( R ^r n ) = `' ( R ^r N ) ) |
| 19 |
|
oveq2 |
|- ( n = N -> ( `' R ^r n ) = ( `' R ^r N ) ) |
| 20 |
18 19
|
eqeq12d |
|- ( n = N -> ( `' ( R ^r n ) = ( `' R ^r n ) <-> `' ( R ^r N ) = ( `' R ^r N ) ) ) |
| 21 |
20
|
imbi2d |
|- ( n = N -> ( ( R e. V -> `' ( R ^r n ) = ( `' R ^r n ) ) <-> ( R e. V -> `' ( R ^r N ) = ( `' R ^r N ) ) ) ) |
| 22 |
|
relexp1g |
|- ( R e. V -> ( R ^r 1 ) = R ) |
| 23 |
22
|
cnveqd |
|- ( R e. V -> `' ( R ^r 1 ) = `' R ) |
| 24 |
|
cnvexg |
|- ( R e. V -> `' R e. _V ) |
| 25 |
|
relexp1g |
|- ( `' R e. _V -> ( `' R ^r 1 ) = `' R ) |
| 26 |
24 25
|
syl |
|- ( R e. V -> ( `' R ^r 1 ) = `' R ) |
| 27 |
23 26
|
eqtr4d |
|- ( R e. V -> `' ( R ^r 1 ) = ( `' R ^r 1 ) ) |
| 28 |
|
cnvco |
|- `' ( ( R ^r m ) o. R ) = ( `' R o. `' ( R ^r m ) ) |
| 29 |
|
simp3 |
|- ( ( m e. NN /\ R e. V /\ `' ( R ^r m ) = ( `' R ^r m ) ) -> `' ( R ^r m ) = ( `' R ^r m ) ) |
| 30 |
29
|
coeq2d |
|- ( ( m e. NN /\ R e. V /\ `' ( R ^r m ) = ( `' R ^r m ) ) -> ( `' R o. `' ( R ^r m ) ) = ( `' R o. ( `' R ^r m ) ) ) |
| 31 |
28 30
|
eqtrid |
|- ( ( m e. NN /\ R e. V /\ `' ( R ^r m ) = ( `' R ^r m ) ) -> `' ( ( R ^r m ) o. R ) = ( `' R o. ( `' R ^r m ) ) ) |
| 32 |
|
simp2 |
|- ( ( m e. NN /\ R e. V /\ `' ( R ^r m ) = ( `' R ^r m ) ) -> R e. V ) |
| 33 |
|
simp1 |
|- ( ( m e. NN /\ R e. V /\ `' ( R ^r m ) = ( `' R ^r m ) ) -> m e. NN ) |
| 34 |
|
relexpsucnnr |
|- ( ( R e. V /\ m e. NN ) -> ( R ^r ( m + 1 ) ) = ( ( R ^r m ) o. R ) ) |
| 35 |
32 33 34
|
syl2anc |
|- ( ( m e. NN /\ R e. V /\ `' ( R ^r m ) = ( `' R ^r m ) ) -> ( R ^r ( m + 1 ) ) = ( ( R ^r m ) o. R ) ) |
| 36 |
35
|
cnveqd |
|- ( ( m e. NN /\ R e. V /\ `' ( R ^r m ) = ( `' R ^r m ) ) -> `' ( R ^r ( m + 1 ) ) = `' ( ( R ^r m ) o. R ) ) |
| 37 |
32 24
|
syl |
|- ( ( m e. NN /\ R e. V /\ `' ( R ^r m ) = ( `' R ^r m ) ) -> `' R e. _V ) |
| 38 |
|
relexpsucnnl |
|- ( ( `' R e. _V /\ m e. NN ) -> ( `' R ^r ( m + 1 ) ) = ( `' R o. ( `' R ^r m ) ) ) |
| 39 |
37 33 38
|
syl2anc |
|- ( ( m e. NN /\ R e. V /\ `' ( R ^r m ) = ( `' R ^r m ) ) -> ( `' R ^r ( m + 1 ) ) = ( `' R o. ( `' R ^r m ) ) ) |
| 40 |
31 36 39
|
3eqtr4d |
|- ( ( m e. NN /\ R e. V /\ `' ( R ^r m ) = ( `' R ^r m ) ) -> `' ( R ^r ( m + 1 ) ) = ( `' R ^r ( m + 1 ) ) ) |
| 41 |
40
|
3exp |
|- ( m e. NN -> ( R e. V -> ( `' ( R ^r m ) = ( `' R ^r m ) -> `' ( R ^r ( m + 1 ) ) = ( `' R ^r ( m + 1 ) ) ) ) ) |
| 42 |
41
|
a2d |
|- ( m e. NN -> ( ( R e. V -> `' ( R ^r m ) = ( `' R ^r m ) ) -> ( R e. V -> `' ( R ^r ( m + 1 ) ) = ( `' R ^r ( m + 1 ) ) ) ) ) |
| 43 |
6 11 16 21 27 42
|
nnind |
|- ( N e. NN -> ( R e. V -> `' ( R ^r N ) = ( `' R ^r N ) ) ) |
| 44 |
|
cnvresid |
|- `' ( _I |` ( dom R u. ran R ) ) = ( _I |` ( dom R u. ran R ) ) |
| 45 |
|
uncom |
|- ( dom R u. ran R ) = ( ran R u. dom R ) |
| 46 |
|
df-rn |
|- ran R = dom `' R |
| 47 |
|
dfdm4 |
|- dom R = ran `' R |
| 48 |
46 47
|
uneq12i |
|- ( ran R u. dom R ) = ( dom `' R u. ran `' R ) |
| 49 |
45 48
|
eqtri |
|- ( dom R u. ran R ) = ( dom `' R u. ran `' R ) |
| 50 |
49
|
reseq2i |
|- ( _I |` ( dom R u. ran R ) ) = ( _I |` ( dom `' R u. ran `' R ) ) |
| 51 |
44 50
|
eqtri |
|- `' ( _I |` ( dom R u. ran R ) ) = ( _I |` ( dom `' R u. ran `' R ) ) |
| 52 |
|
oveq2 |
|- ( N = 0 -> ( R ^r N ) = ( R ^r 0 ) ) |
| 53 |
|
relexp0g |
|- ( R e. V -> ( R ^r 0 ) = ( _I |` ( dom R u. ran R ) ) ) |
| 54 |
52 53
|
sylan9eq |
|- ( ( N = 0 /\ R e. V ) -> ( R ^r N ) = ( _I |` ( dom R u. ran R ) ) ) |
| 55 |
54
|
cnveqd |
|- ( ( N = 0 /\ R e. V ) -> `' ( R ^r N ) = `' ( _I |` ( dom R u. ran R ) ) ) |
| 56 |
|
oveq2 |
|- ( N = 0 -> ( `' R ^r N ) = ( `' R ^r 0 ) ) |
| 57 |
56
|
adantr |
|- ( ( N = 0 /\ R e. V ) -> ( `' R ^r N ) = ( `' R ^r 0 ) ) |
| 58 |
|
simpr |
|- ( ( N = 0 /\ R e. V ) -> R e. V ) |
| 59 |
|
relexp0g |
|- ( `' R e. _V -> ( `' R ^r 0 ) = ( _I |` ( dom `' R u. ran `' R ) ) ) |
| 60 |
58 24 59
|
3syl |
|- ( ( N = 0 /\ R e. V ) -> ( `' R ^r 0 ) = ( _I |` ( dom `' R u. ran `' R ) ) ) |
| 61 |
57 60
|
eqtrd |
|- ( ( N = 0 /\ R e. V ) -> ( `' R ^r N ) = ( _I |` ( dom `' R u. ran `' R ) ) ) |
| 62 |
51 55 61
|
3eqtr4a |
|- ( ( N = 0 /\ R e. V ) -> `' ( R ^r N ) = ( `' R ^r N ) ) |
| 63 |
62
|
ex |
|- ( N = 0 -> ( R e. V -> `' ( R ^r N ) = ( `' R ^r N ) ) ) |
| 64 |
43 63
|
jaoi |
|- ( ( N e. NN \/ N = 0 ) -> ( R e. V -> `' ( R ^r N ) = ( `' R ^r N ) ) ) |
| 65 |
1 64
|
sylbi |
|- ( N e. NN0 -> ( R e. V -> `' ( R ^r N ) = ( `' R ^r N ) ) ) |
| 66 |
65
|
imp |
|- ( ( N e. NN0 /\ R e. V ) -> `' ( R ^r N ) = ( `' R ^r N ) ) |