| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elnn0 |
|
| 2 |
|
oveq2 |
|
| 3 |
2
|
cnveqd |
|
| 4 |
|
oveq2 |
|
| 5 |
3 4
|
eqeq12d |
|
| 6 |
5
|
imbi2d |
|
| 7 |
|
oveq2 |
|
| 8 |
7
|
cnveqd |
|
| 9 |
|
oveq2 |
|
| 10 |
8 9
|
eqeq12d |
|
| 11 |
10
|
imbi2d |
|
| 12 |
|
oveq2 |
|
| 13 |
12
|
cnveqd |
|
| 14 |
|
oveq2 |
|
| 15 |
13 14
|
eqeq12d |
|
| 16 |
15
|
imbi2d |
|
| 17 |
|
oveq2 |
|
| 18 |
17
|
cnveqd |
|
| 19 |
|
oveq2 |
|
| 20 |
18 19
|
eqeq12d |
|
| 21 |
20
|
imbi2d |
|
| 22 |
|
relexp1g |
|
| 23 |
22
|
cnveqd |
|
| 24 |
|
cnvexg |
|
| 25 |
|
relexp1g |
|
| 26 |
24 25
|
syl |
|
| 27 |
23 26
|
eqtr4d |
|
| 28 |
|
cnvco |
|
| 29 |
|
simp3 |
|
| 30 |
29
|
coeq2d |
|
| 31 |
28 30
|
eqtrid |
|
| 32 |
|
simp2 |
|
| 33 |
|
simp1 |
|
| 34 |
|
relexpsucnnr |
|
| 35 |
32 33 34
|
syl2anc |
|
| 36 |
35
|
cnveqd |
|
| 37 |
32 24
|
syl |
|
| 38 |
|
relexpsucnnl |
|
| 39 |
37 33 38
|
syl2anc |
|
| 40 |
31 36 39
|
3eqtr4d |
|
| 41 |
40
|
3exp |
|
| 42 |
41
|
a2d |
|
| 43 |
6 11 16 21 27 42
|
nnind |
|
| 44 |
|
cnvresid |
|
| 45 |
|
uncom |
|
| 46 |
|
df-rn |
|
| 47 |
|
dfdm4 |
|
| 48 |
46 47
|
uneq12i |
|
| 49 |
45 48
|
eqtri |
|
| 50 |
49
|
reseq2i |
|
| 51 |
44 50
|
eqtri |
|
| 52 |
|
oveq2 |
|
| 53 |
|
relexp0g |
|
| 54 |
52 53
|
sylan9eq |
|
| 55 |
54
|
cnveqd |
|
| 56 |
|
oveq2 |
|
| 57 |
56
|
adantr |
|
| 58 |
|
simpr |
|
| 59 |
|
relexp0g |
|
| 60 |
58 24 59
|
3syl |
|
| 61 |
57 60
|
eqtrd |
|
| 62 |
51 55 61
|
3eqtr4a |
|
| 63 |
62
|
ex |
|
| 64 |
43 63
|
jaoi |
|
| 65 |
1 64
|
sylbi |
|
| 66 |
65
|
imp |
|