Metamath Proof Explorer


Theorem relexpcnv

Description: Commutation of converse and relation exponentiation. (Contributed by RP, 23-May-2020)

Ref Expression
Assertion relexpcnv N 0 R V R r N -1 = R -1 r N

Proof

Step Hyp Ref Expression
1 elnn0 N 0 N N = 0
2 oveq2 n = 1 R r n = R r 1
3 2 cnveqd n = 1 R r n -1 = R r 1 -1
4 oveq2 n = 1 R -1 r n = R -1 r 1
5 3 4 eqeq12d n = 1 R r n -1 = R -1 r n R r 1 -1 = R -1 r 1
6 5 imbi2d n = 1 R V R r n -1 = R -1 r n R V R r 1 -1 = R -1 r 1
7 oveq2 n = m R r n = R r m
8 7 cnveqd n = m R r n -1 = R r m -1
9 oveq2 n = m R -1 r n = R -1 r m
10 8 9 eqeq12d n = m R r n -1 = R -1 r n R r m -1 = R -1 r m
11 10 imbi2d n = m R V R r n -1 = R -1 r n R V R r m -1 = R -1 r m
12 oveq2 n = m + 1 R r n = R r m + 1
13 12 cnveqd n = m + 1 R r n -1 = R r m + 1 -1
14 oveq2 n = m + 1 R -1 r n = R -1 r m + 1
15 13 14 eqeq12d n = m + 1 R r n -1 = R -1 r n R r m + 1 -1 = R -1 r m + 1
16 15 imbi2d n = m + 1 R V R r n -1 = R -1 r n R V R r m + 1 -1 = R -1 r m + 1
17 oveq2 n = N R r n = R r N
18 17 cnveqd n = N R r n -1 = R r N -1
19 oveq2 n = N R -1 r n = R -1 r N
20 18 19 eqeq12d n = N R r n -1 = R -1 r n R r N -1 = R -1 r N
21 20 imbi2d n = N R V R r n -1 = R -1 r n R V R r N -1 = R -1 r N
22 relexp1g R V R r 1 = R
23 22 cnveqd R V R r 1 -1 = R -1
24 cnvexg R V R -1 V
25 relexp1g R -1 V R -1 r 1 = R -1
26 24 25 syl R V R -1 r 1 = R -1
27 23 26 eqtr4d R V R r 1 -1 = R -1 r 1
28 cnvco R r m R -1 = R -1 R r m -1
29 simp3 m R V R r m -1 = R -1 r m R r m -1 = R -1 r m
30 29 coeq2d m R V R r m -1 = R -1 r m R -1 R r m -1 = R -1 R -1 r m
31 28 30 eqtrid m R V R r m -1 = R -1 r m R r m R -1 = R -1 R -1 r m
32 simp2 m R V R r m -1 = R -1 r m R V
33 simp1 m R V R r m -1 = R -1 r m m
34 relexpsucnnr R V m R r m + 1 = R r m R
35 32 33 34 syl2anc m R V R r m -1 = R -1 r m R r m + 1 = R r m R
36 35 cnveqd m R V R r m -1 = R -1 r m R r m + 1 -1 = R r m R -1
37 32 24 syl m R V R r m -1 = R -1 r m R -1 V
38 relexpsucnnl R -1 V m R -1 r m + 1 = R -1 R -1 r m
39 37 33 38 syl2anc m R V R r m -1 = R -1 r m R -1 r m + 1 = R -1 R -1 r m
40 31 36 39 3eqtr4d m R V R r m -1 = R -1 r m R r m + 1 -1 = R -1 r m + 1
41 40 3exp m R V R r m -1 = R -1 r m R r m + 1 -1 = R -1 r m + 1
42 41 a2d m R V R r m -1 = R -1 r m R V R r m + 1 -1 = R -1 r m + 1
43 6 11 16 21 27 42 nnind N R V R r N -1 = R -1 r N
44 cnvresid I dom R ran R -1 = I dom R ran R
45 uncom dom R ran R = ran R dom R
46 df-rn ran R = dom R -1
47 dfdm4 dom R = ran R -1
48 46 47 uneq12i ran R dom R = dom R -1 ran R -1
49 45 48 eqtri dom R ran R = dom R -1 ran R -1
50 49 reseq2i I dom R ran R = I dom R -1 ran R -1
51 44 50 eqtri I dom R ran R -1 = I dom R -1 ran R -1
52 oveq2 N = 0 R r N = R r 0
53 relexp0g R V R r 0 = I dom R ran R
54 52 53 sylan9eq N = 0 R V R r N = I dom R ran R
55 54 cnveqd N = 0 R V R r N -1 = I dom R ran R -1
56 oveq2 N = 0 R -1 r N = R -1 r 0
57 56 adantr N = 0 R V R -1 r N = R -1 r 0
58 simpr N = 0 R V R V
59 relexp0g R -1 V R -1 r 0 = I dom R -1 ran R -1
60 58 24 59 3syl N = 0 R V R -1 r 0 = I dom R -1 ran R -1
61 57 60 eqtrd N = 0 R V R -1 r N = I dom R -1 ran R -1
62 51 55 61 3eqtr4a N = 0 R V R r N -1 = R -1 r N
63 62 ex N = 0 R V R r N -1 = R -1 r N
64 43 63 jaoi N N = 0 R V R r N -1 = R -1 r N
65 1 64 sylbi N 0 R V R r N -1 = R -1 r N
66 65 imp N 0 R V R r N -1 = R -1 r N