Metamath Proof Explorer


Theorem relexpaddg

Description: Relation composition becomes addition under exponentiation except when the exponents total to one and the class isn't a relation. (Contributed by RP, 30-May-2020)

Ref Expression
Assertion relexpaddg ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑀 ∈ ℕ0𝑅𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → ( ( 𝑅𝑟 𝑁 ) ∘ ( 𝑅𝑟 𝑀 ) ) = ( 𝑅𝑟 ( 𝑁 + 𝑀 ) ) )

Proof

Step Hyp Ref Expression
1 elnn0 ( 𝑁 ∈ ℕ0 ↔ ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) )
2 elnn0 ( 𝑀 ∈ ℕ0 ↔ ( 𝑀 ∈ ℕ ∨ 𝑀 = 0 ) )
3 relexpaddnn ( ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑅𝑉 ) → ( ( 𝑅𝑟 𝑁 ) ∘ ( 𝑅𝑟 𝑀 ) ) = ( 𝑅𝑟 ( 𝑁 + 𝑀 ) ) )
4 3 a1d ( ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑅𝑉 ) → ( ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) → ( ( 𝑅𝑟 𝑁 ) ∘ ( 𝑅𝑟 𝑀 ) ) = ( 𝑅𝑟 ( 𝑁 + 𝑀 ) ) ) )
5 4 3exp ( 𝑁 ∈ ℕ → ( 𝑀 ∈ ℕ → ( 𝑅𝑉 → ( ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) → ( ( 𝑅𝑟 𝑁 ) ∘ ( 𝑅𝑟 𝑀 ) ) = ( 𝑅𝑟 ( 𝑁 + 𝑀 ) ) ) ) ) )
6 5 com12 ( 𝑀 ∈ ℕ → ( 𝑁 ∈ ℕ → ( 𝑅𝑉 → ( ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) → ( ( 𝑅𝑟 𝑁 ) ∘ ( 𝑅𝑟 𝑀 ) ) = ( 𝑅𝑟 ( 𝑁 + 𝑀 ) ) ) ) ) )
7 elnn1uz2 ( 𝑁 ∈ ℕ ↔ ( 𝑁 = 1 ∨ 𝑁 ∈ ( ℤ ‘ 2 ) ) )
8 coires1 ( ( 𝑅𝑟 𝑁 ) ∘ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) = ( ( 𝑅𝑟 𝑁 ) ↾ ( dom 𝑅 ∪ ran 𝑅 ) )
9 simpll ( ( ( 𝑁 = 1 ∧ 𝑀 = 0 ) ∧ ( 𝑅𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → 𝑁 = 1 )
10 simplr ( ( ( 𝑁 = 1 ∧ 𝑀 = 0 ) ∧ ( 𝑅𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → 𝑀 = 0 )
11 9 10 oveq12d ( ( ( 𝑁 = 1 ∧ 𝑀 = 0 ) ∧ ( 𝑅𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → ( 𝑁 + 𝑀 ) = ( 1 + 0 ) )
12 1p0e1 ( 1 + 0 ) = 1
13 11 12 eqtrdi ( ( ( 𝑁 = 1 ∧ 𝑀 = 0 ) ∧ ( 𝑅𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → ( 𝑁 + 𝑀 ) = 1 )
14 simprr ( ( ( 𝑁 = 1 ∧ 𝑀 = 0 ) ∧ ( 𝑅𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) )
15 13 14 mpd ( ( ( 𝑁 = 1 ∧ 𝑀 = 0 ) ∧ ( 𝑅𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → Rel 𝑅 )
16 9 oveq2d ( ( ( 𝑁 = 1 ∧ 𝑀 = 0 ) ∧ ( 𝑅𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → ( 𝑅𝑟 𝑁 ) = ( 𝑅𝑟 1 ) )
17 simprl ( ( ( 𝑁 = 1 ∧ 𝑀 = 0 ) ∧ ( 𝑅𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → 𝑅𝑉 )
18 relexp1g ( 𝑅𝑉 → ( 𝑅𝑟 1 ) = 𝑅 )
19 17 18 syl ( ( ( 𝑁 = 1 ∧ 𝑀 = 0 ) ∧ ( 𝑅𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → ( 𝑅𝑟 1 ) = 𝑅 )
20 16 19 eqtrd ( ( ( 𝑁 = 1 ∧ 𝑀 = 0 ) ∧ ( 𝑅𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → ( 𝑅𝑟 𝑁 ) = 𝑅 )
21 20 releqd ( ( ( 𝑁 = 1 ∧ 𝑀 = 0 ) ∧ ( 𝑅𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → ( Rel ( 𝑅𝑟 𝑁 ) ↔ Rel 𝑅 ) )
22 15 21 mpbird ( ( ( 𝑁 = 1 ∧ 𝑀 = 0 ) ∧ ( 𝑅𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → Rel ( 𝑅𝑟 𝑁 ) )
23 1nn 1 ∈ ℕ
24 9 23 eqeltrdi ( ( ( 𝑁 = 1 ∧ 𝑀 = 0 ) ∧ ( 𝑅𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → 𝑁 ∈ ℕ )
25 relexpnndm ( ( 𝑁 ∈ ℕ ∧ 𝑅𝑉 ) → dom ( 𝑅𝑟 𝑁 ) ⊆ dom 𝑅 )
26 24 17 25 syl2anc ( ( ( 𝑁 = 1 ∧ 𝑀 = 0 ) ∧ ( 𝑅𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → dom ( 𝑅𝑟 𝑁 ) ⊆ dom 𝑅 )
27 ssun1 dom 𝑅 ⊆ ( dom 𝑅 ∪ ran 𝑅 )
28 26 27 sstrdi ( ( ( 𝑁 = 1 ∧ 𝑀 = 0 ) ∧ ( 𝑅𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → dom ( 𝑅𝑟 𝑁 ) ⊆ ( dom 𝑅 ∪ ran 𝑅 ) )
29 relssres ( ( Rel ( 𝑅𝑟 𝑁 ) ∧ dom ( 𝑅𝑟 𝑁 ) ⊆ ( dom 𝑅 ∪ ran 𝑅 ) ) → ( ( 𝑅𝑟 𝑁 ) ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) = ( 𝑅𝑟 𝑁 ) )
30 22 28 29 syl2anc ( ( ( 𝑁 = 1 ∧ 𝑀 = 0 ) ∧ ( 𝑅𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → ( ( 𝑅𝑟 𝑁 ) ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) = ( 𝑅𝑟 𝑁 ) )
31 8 30 syl5eq ( ( ( 𝑁 = 1 ∧ 𝑀 = 0 ) ∧ ( 𝑅𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → ( ( 𝑅𝑟 𝑁 ) ∘ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) = ( 𝑅𝑟 𝑁 ) )
32 10 oveq2d ( ( ( 𝑁 = 1 ∧ 𝑀 = 0 ) ∧ ( 𝑅𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → ( 𝑅𝑟 𝑀 ) = ( 𝑅𝑟 0 ) )
33 relexp0g ( 𝑅𝑉 → ( 𝑅𝑟 0 ) = ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) )
34 17 33 syl ( ( ( 𝑁 = 1 ∧ 𝑀 = 0 ) ∧ ( 𝑅𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → ( 𝑅𝑟 0 ) = ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) )
35 32 34 eqtrd ( ( ( 𝑁 = 1 ∧ 𝑀 = 0 ) ∧ ( 𝑅𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → ( 𝑅𝑟 𝑀 ) = ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) )
36 35 coeq2d ( ( ( 𝑁 = 1 ∧ 𝑀 = 0 ) ∧ ( 𝑅𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → ( ( 𝑅𝑟 𝑁 ) ∘ ( 𝑅𝑟 𝑀 ) ) = ( ( 𝑅𝑟 𝑁 ) ∘ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) )
37 10 oveq2d ( ( ( 𝑁 = 1 ∧ 𝑀 = 0 ) ∧ ( 𝑅𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → ( 𝑁 + 𝑀 ) = ( 𝑁 + 0 ) )
38 ax-1cn 1 ∈ ℂ
39 9 38 eqeltrdi ( ( ( 𝑁 = 1 ∧ 𝑀 = 0 ) ∧ ( 𝑅𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → 𝑁 ∈ ℂ )
40 39 addid1d ( ( ( 𝑁 = 1 ∧ 𝑀 = 0 ) ∧ ( 𝑅𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → ( 𝑁 + 0 ) = 𝑁 )
41 37 40 eqtrd ( ( ( 𝑁 = 1 ∧ 𝑀 = 0 ) ∧ ( 𝑅𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → ( 𝑁 + 𝑀 ) = 𝑁 )
42 41 oveq2d ( ( ( 𝑁 = 1 ∧ 𝑀 = 0 ) ∧ ( 𝑅𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → ( 𝑅𝑟 ( 𝑁 + 𝑀 ) ) = ( 𝑅𝑟 𝑁 ) )
43 31 36 42 3eqtr4d ( ( ( 𝑁 = 1 ∧ 𝑀 = 0 ) ∧ ( 𝑅𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → ( ( 𝑅𝑟 𝑁 ) ∘ ( 𝑅𝑟 𝑀 ) ) = ( 𝑅𝑟 ( 𝑁 + 𝑀 ) ) )
44 43 exp43 ( 𝑁 = 1 → ( 𝑀 = 0 → ( 𝑅𝑉 → ( ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) → ( ( 𝑅𝑟 𝑁 ) ∘ ( 𝑅𝑟 𝑀 ) ) = ( 𝑅𝑟 ( 𝑁 + 𝑀 ) ) ) ) ) )
45 simp1 ( ( 𝑁 ∈ ( ℤ ‘ 2 ) ∧ 𝑀 = 0 ∧ 𝑅𝑉 ) → 𝑁 ∈ ( ℤ ‘ 2 ) )
46 simp3 ( ( 𝑁 ∈ ( ℤ ‘ 2 ) ∧ 𝑀 = 0 ∧ 𝑅𝑉 ) → 𝑅𝑉 )
47 relexpuzrel ( ( 𝑁 ∈ ( ℤ ‘ 2 ) ∧ 𝑅𝑉 ) → Rel ( 𝑅𝑟 𝑁 ) )
48 45 46 47 syl2anc ( ( 𝑁 ∈ ( ℤ ‘ 2 ) ∧ 𝑀 = 0 ∧ 𝑅𝑉 ) → Rel ( 𝑅𝑟 𝑁 ) )
49 eluz2nn ( 𝑁 ∈ ( ℤ ‘ 2 ) → 𝑁 ∈ ℕ )
50 45 49 syl ( ( 𝑁 ∈ ( ℤ ‘ 2 ) ∧ 𝑀 = 0 ∧ 𝑅𝑉 ) → 𝑁 ∈ ℕ )
51 50 46 25 syl2anc ( ( 𝑁 ∈ ( ℤ ‘ 2 ) ∧ 𝑀 = 0 ∧ 𝑅𝑉 ) → dom ( 𝑅𝑟 𝑁 ) ⊆ dom 𝑅 )
52 51 27 sstrdi ( ( 𝑁 ∈ ( ℤ ‘ 2 ) ∧ 𝑀 = 0 ∧ 𝑅𝑉 ) → dom ( 𝑅𝑟 𝑁 ) ⊆ ( dom 𝑅 ∪ ran 𝑅 ) )
53 48 52 29 syl2anc ( ( 𝑁 ∈ ( ℤ ‘ 2 ) ∧ 𝑀 = 0 ∧ 𝑅𝑉 ) → ( ( 𝑅𝑟 𝑁 ) ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) = ( 𝑅𝑟 𝑁 ) )
54 8 53 syl5eq ( ( 𝑁 ∈ ( ℤ ‘ 2 ) ∧ 𝑀 = 0 ∧ 𝑅𝑉 ) → ( ( 𝑅𝑟 𝑁 ) ∘ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) = ( 𝑅𝑟 𝑁 ) )
55 simp2 ( ( 𝑁 ∈ ( ℤ ‘ 2 ) ∧ 𝑀 = 0 ∧ 𝑅𝑉 ) → 𝑀 = 0 )
56 55 oveq2d ( ( 𝑁 ∈ ( ℤ ‘ 2 ) ∧ 𝑀 = 0 ∧ 𝑅𝑉 ) → ( 𝑅𝑟 𝑀 ) = ( 𝑅𝑟 0 ) )
57 46 33 syl ( ( 𝑁 ∈ ( ℤ ‘ 2 ) ∧ 𝑀 = 0 ∧ 𝑅𝑉 ) → ( 𝑅𝑟 0 ) = ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) )
58 56 57 eqtrd ( ( 𝑁 ∈ ( ℤ ‘ 2 ) ∧ 𝑀 = 0 ∧ 𝑅𝑉 ) → ( 𝑅𝑟 𝑀 ) = ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) )
59 58 coeq2d ( ( 𝑁 ∈ ( ℤ ‘ 2 ) ∧ 𝑀 = 0 ∧ 𝑅𝑉 ) → ( ( 𝑅𝑟 𝑁 ) ∘ ( 𝑅𝑟 𝑀 ) ) = ( ( 𝑅𝑟 𝑁 ) ∘ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) )
60 55 oveq2d ( ( 𝑁 ∈ ( ℤ ‘ 2 ) ∧ 𝑀 = 0 ∧ 𝑅𝑉 ) → ( 𝑁 + 𝑀 ) = ( 𝑁 + 0 ) )
61 eluzelcn ( 𝑁 ∈ ( ℤ ‘ 2 ) → 𝑁 ∈ ℂ )
62 45 61 syl ( ( 𝑁 ∈ ( ℤ ‘ 2 ) ∧ 𝑀 = 0 ∧ 𝑅𝑉 ) → 𝑁 ∈ ℂ )
63 62 addid1d ( ( 𝑁 ∈ ( ℤ ‘ 2 ) ∧ 𝑀 = 0 ∧ 𝑅𝑉 ) → ( 𝑁 + 0 ) = 𝑁 )
64 60 63 eqtrd ( ( 𝑁 ∈ ( ℤ ‘ 2 ) ∧ 𝑀 = 0 ∧ 𝑅𝑉 ) → ( 𝑁 + 𝑀 ) = 𝑁 )
65 64 oveq2d ( ( 𝑁 ∈ ( ℤ ‘ 2 ) ∧ 𝑀 = 0 ∧ 𝑅𝑉 ) → ( 𝑅𝑟 ( 𝑁 + 𝑀 ) ) = ( 𝑅𝑟 𝑁 ) )
66 54 59 65 3eqtr4d ( ( 𝑁 ∈ ( ℤ ‘ 2 ) ∧ 𝑀 = 0 ∧ 𝑅𝑉 ) → ( ( 𝑅𝑟 𝑁 ) ∘ ( 𝑅𝑟 𝑀 ) ) = ( 𝑅𝑟 ( 𝑁 + 𝑀 ) ) )
67 66 a1d ( ( 𝑁 ∈ ( ℤ ‘ 2 ) ∧ 𝑀 = 0 ∧ 𝑅𝑉 ) → ( ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) → ( ( 𝑅𝑟 𝑁 ) ∘ ( 𝑅𝑟 𝑀 ) ) = ( 𝑅𝑟 ( 𝑁 + 𝑀 ) ) ) )
68 67 3exp ( 𝑁 ∈ ( ℤ ‘ 2 ) → ( 𝑀 = 0 → ( 𝑅𝑉 → ( ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) → ( ( 𝑅𝑟 𝑁 ) ∘ ( 𝑅𝑟 𝑀 ) ) = ( 𝑅𝑟 ( 𝑁 + 𝑀 ) ) ) ) ) )
69 44 68 jaoi ( ( 𝑁 = 1 ∨ 𝑁 ∈ ( ℤ ‘ 2 ) ) → ( 𝑀 = 0 → ( 𝑅𝑉 → ( ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) → ( ( 𝑅𝑟 𝑁 ) ∘ ( 𝑅𝑟 𝑀 ) ) = ( 𝑅𝑟 ( 𝑁 + 𝑀 ) ) ) ) ) )
70 7 69 sylbi ( 𝑁 ∈ ℕ → ( 𝑀 = 0 → ( 𝑅𝑉 → ( ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) → ( ( 𝑅𝑟 𝑁 ) ∘ ( 𝑅𝑟 𝑀 ) ) = ( 𝑅𝑟 ( 𝑁 + 𝑀 ) ) ) ) ) )
71 70 com12 ( 𝑀 = 0 → ( 𝑁 ∈ ℕ → ( 𝑅𝑉 → ( ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) → ( ( 𝑅𝑟 𝑁 ) ∘ ( 𝑅𝑟 𝑀 ) ) = ( 𝑅𝑟 ( 𝑁 + 𝑀 ) ) ) ) ) )
72 6 71 jaoi ( ( 𝑀 ∈ ℕ ∨ 𝑀 = 0 ) → ( 𝑁 ∈ ℕ → ( 𝑅𝑉 → ( ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) → ( ( 𝑅𝑟 𝑁 ) ∘ ( 𝑅𝑟 𝑀 ) ) = ( 𝑅𝑟 ( 𝑁 + 𝑀 ) ) ) ) ) )
73 2 72 sylbi ( 𝑀 ∈ ℕ0 → ( 𝑁 ∈ ℕ → ( 𝑅𝑉 → ( ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) → ( ( 𝑅𝑟 𝑁 ) ∘ ( 𝑅𝑟 𝑀 ) ) = ( 𝑅𝑟 ( 𝑁 + 𝑀 ) ) ) ) ) )
74 73 com12 ( 𝑁 ∈ ℕ → ( 𝑀 ∈ ℕ0 → ( 𝑅𝑉 → ( ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) → ( ( 𝑅𝑟 𝑁 ) ∘ ( 𝑅𝑟 𝑀 ) ) = ( 𝑅𝑟 ( 𝑁 + 𝑀 ) ) ) ) ) )
75 74 3impd ( 𝑁 ∈ ℕ → ( ( 𝑀 ∈ ℕ0𝑅𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) → ( ( 𝑅𝑟 𝑁 ) ∘ ( 𝑅𝑟 𝑀 ) ) = ( 𝑅𝑟 ( 𝑁 + 𝑀 ) ) ) )
76 elnn1uz2 ( 𝑀 ∈ ℕ ↔ ( 𝑀 = 1 ∨ 𝑀 ∈ ( ℤ ‘ 2 ) ) )
77 coires1 ( 𝑅 ∘ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) = ( 𝑅 ↾ ( dom 𝑅 ∪ ran 𝑅 ) )
78 relcnv Rel 𝑅
79 ssun1 dom 𝑅 ⊆ ( dom 𝑅 ∪ ran 𝑅 )
80 78 79 pm3.2i ( Rel 𝑅 ∧ dom 𝑅 ⊆ ( dom 𝑅 ∪ ran 𝑅 ) )
81 relssres ( ( Rel 𝑅 ∧ dom 𝑅 ⊆ ( dom 𝑅 ∪ ran 𝑅 ) ) → ( 𝑅 ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) = 𝑅 )
82 80 81 mp1i ( ( ( 𝑁 = 0 ∧ 𝑀 = 1 ) ∧ ( 𝑅𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → ( 𝑅 ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) = 𝑅 )
83 77 82 syl5eq ( ( ( 𝑁 = 0 ∧ 𝑀 = 1 ) ∧ ( 𝑅𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → ( 𝑅 ∘ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) = 𝑅 )
84 cnvco ( ( 𝑅𝑟 𝑁 ) ∘ ( 𝑅𝑟 𝑀 ) ) = ( ( 𝑅𝑟 𝑀 ) ∘ ( 𝑅𝑟 𝑁 ) )
85 simplr ( ( ( 𝑁 = 0 ∧ 𝑀 = 1 ) ∧ ( 𝑅𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → 𝑀 = 1 )
86 1nn0 1 ∈ ℕ0
87 85 86 eqeltrdi ( ( ( 𝑁 = 0 ∧ 𝑀 = 1 ) ∧ ( 𝑅𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → 𝑀 ∈ ℕ0 )
88 simprl ( ( ( 𝑁 = 0 ∧ 𝑀 = 1 ) ∧ ( 𝑅𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → 𝑅𝑉 )
89 relexpcnv ( ( 𝑀 ∈ ℕ0𝑅𝑉 ) → ( 𝑅𝑟 𝑀 ) = ( 𝑅𝑟 𝑀 ) )
90 87 88 89 syl2anc ( ( ( 𝑁 = 0 ∧ 𝑀 = 1 ) ∧ ( 𝑅𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → ( 𝑅𝑟 𝑀 ) = ( 𝑅𝑟 𝑀 ) )
91 85 oveq2d ( ( ( 𝑁 = 0 ∧ 𝑀 = 1 ) ∧ ( 𝑅𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → ( 𝑅𝑟 𝑀 ) = ( 𝑅𝑟 1 ) )
92 cnvexg ( 𝑅𝑉 𝑅 ∈ V )
93 88 92 syl ( ( ( 𝑁 = 0 ∧ 𝑀 = 1 ) ∧ ( 𝑅𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → 𝑅 ∈ V )
94 relexp1g ( 𝑅 ∈ V → ( 𝑅𝑟 1 ) = 𝑅 )
95 93 94 syl ( ( ( 𝑁 = 0 ∧ 𝑀 = 1 ) ∧ ( 𝑅𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → ( 𝑅𝑟 1 ) = 𝑅 )
96 90 91 95 3eqtrd ( ( ( 𝑁 = 0 ∧ 𝑀 = 1 ) ∧ ( 𝑅𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → ( 𝑅𝑟 𝑀 ) = 𝑅 )
97 simpll ( ( ( 𝑁 = 0 ∧ 𝑀 = 1 ) ∧ ( 𝑅𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → 𝑁 = 0 )
98 0nn0 0 ∈ ℕ0
99 97 98 eqeltrdi ( ( ( 𝑁 = 0 ∧ 𝑀 = 1 ) ∧ ( 𝑅𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → 𝑁 ∈ ℕ0 )
100 relexpcnv ( ( 𝑁 ∈ ℕ0𝑅𝑉 ) → ( 𝑅𝑟 𝑁 ) = ( 𝑅𝑟 𝑁 ) )
101 99 88 100 syl2anc ( ( ( 𝑁 = 0 ∧ 𝑀 = 1 ) ∧ ( 𝑅𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → ( 𝑅𝑟 𝑁 ) = ( 𝑅𝑟 𝑁 ) )
102 97 oveq2d ( ( ( 𝑁 = 0 ∧ 𝑀 = 1 ) ∧ ( 𝑅𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → ( 𝑅𝑟 𝑁 ) = ( 𝑅𝑟 0 ) )
103 relexp0g ( 𝑅 ∈ V → ( 𝑅𝑟 0 ) = ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) )
104 93 103 syl ( ( ( 𝑁 = 0 ∧ 𝑀 = 1 ) ∧ ( 𝑅𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → ( 𝑅𝑟 0 ) = ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) )
105 101 102 104 3eqtrd ( ( ( 𝑁 = 0 ∧ 𝑀 = 1 ) ∧ ( 𝑅𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → ( 𝑅𝑟 𝑁 ) = ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) )
106 96 105 coeq12d ( ( ( 𝑁 = 0 ∧ 𝑀 = 1 ) ∧ ( 𝑅𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → ( ( 𝑅𝑟 𝑀 ) ∘ ( 𝑅𝑟 𝑁 ) ) = ( 𝑅 ∘ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) )
107 84 106 syl5eq ( ( ( 𝑁 = 0 ∧ 𝑀 = 1 ) ∧ ( 𝑅𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → ( ( 𝑅𝑟 𝑁 ) ∘ ( 𝑅𝑟 𝑀 ) ) = ( 𝑅 ∘ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) )
108 99 87 nn0addcld ( ( ( 𝑁 = 0 ∧ 𝑀 = 1 ) ∧ ( 𝑅𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → ( 𝑁 + 𝑀 ) ∈ ℕ0 )
109 relexpcnv ( ( ( 𝑁 + 𝑀 ) ∈ ℕ0𝑅𝑉 ) → ( 𝑅𝑟 ( 𝑁 + 𝑀 ) ) = ( 𝑅𝑟 ( 𝑁 + 𝑀 ) ) )
110 108 88 109 syl2anc ( ( ( 𝑁 = 0 ∧ 𝑀 = 1 ) ∧ ( 𝑅𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → ( 𝑅𝑟 ( 𝑁 + 𝑀 ) ) = ( 𝑅𝑟 ( 𝑁 + 𝑀 ) ) )
111 97 85 oveq12d ( ( ( 𝑁 = 0 ∧ 𝑀 = 1 ) ∧ ( 𝑅𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → ( 𝑁 + 𝑀 ) = ( 0 + 1 ) )
112 0p1e1 ( 0 + 1 ) = 1
113 111 112 eqtrdi ( ( ( 𝑁 = 0 ∧ 𝑀 = 1 ) ∧ ( 𝑅𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → ( 𝑁 + 𝑀 ) = 1 )
114 113 oveq2d ( ( ( 𝑁 = 0 ∧ 𝑀 = 1 ) ∧ ( 𝑅𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → ( 𝑅𝑟 ( 𝑁 + 𝑀 ) ) = ( 𝑅𝑟 1 ) )
115 110 114 95 3eqtrd ( ( ( 𝑁 = 0 ∧ 𝑀 = 1 ) ∧ ( 𝑅𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → ( 𝑅𝑟 ( 𝑁 + 𝑀 ) ) = 𝑅 )
116 83 107 115 3eqtr4d ( ( ( 𝑁 = 0 ∧ 𝑀 = 1 ) ∧ ( 𝑅𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → ( ( 𝑅𝑟 𝑁 ) ∘ ( 𝑅𝑟 𝑀 ) ) = ( 𝑅𝑟 ( 𝑁 + 𝑀 ) ) )
117 relco Rel ( ( 𝑅𝑟 𝑁 ) ∘ ( 𝑅𝑟 𝑀 ) )
118 simprr ( ( ( 𝑁 = 0 ∧ 𝑀 = 1 ) ∧ ( 𝑅𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) )
119 113 118 mpd ( ( ( 𝑁 = 0 ∧ 𝑀 = 1 ) ∧ ( 𝑅𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → Rel 𝑅 )
120 113 oveq2d ( ( ( 𝑁 = 0 ∧ 𝑀 = 1 ) ∧ ( 𝑅𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → ( 𝑅𝑟 ( 𝑁 + 𝑀 ) ) = ( 𝑅𝑟 1 ) )
121 88 18 syl ( ( ( 𝑁 = 0 ∧ 𝑀 = 1 ) ∧ ( 𝑅𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → ( 𝑅𝑟 1 ) = 𝑅 )
122 120 121 eqtrd ( ( ( 𝑁 = 0 ∧ 𝑀 = 1 ) ∧ ( 𝑅𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → ( 𝑅𝑟 ( 𝑁 + 𝑀 ) ) = 𝑅 )
123 122 releqd ( ( ( 𝑁 = 0 ∧ 𝑀 = 1 ) ∧ ( 𝑅𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → ( Rel ( 𝑅𝑟 ( 𝑁 + 𝑀 ) ) ↔ Rel 𝑅 ) )
124 119 123 mpbird ( ( ( 𝑁 = 0 ∧ 𝑀 = 1 ) ∧ ( 𝑅𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → Rel ( 𝑅𝑟 ( 𝑁 + 𝑀 ) ) )
125 cnveqb ( ( Rel ( ( 𝑅𝑟 𝑁 ) ∘ ( 𝑅𝑟 𝑀 ) ) ∧ Rel ( 𝑅𝑟 ( 𝑁 + 𝑀 ) ) ) → ( ( ( 𝑅𝑟 𝑁 ) ∘ ( 𝑅𝑟 𝑀 ) ) = ( 𝑅𝑟 ( 𝑁 + 𝑀 ) ) ↔ ( ( 𝑅𝑟 𝑁 ) ∘ ( 𝑅𝑟 𝑀 ) ) = ( 𝑅𝑟 ( 𝑁 + 𝑀 ) ) ) )
126 117 124 125 sylancr ( ( ( 𝑁 = 0 ∧ 𝑀 = 1 ) ∧ ( 𝑅𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → ( ( ( 𝑅𝑟 𝑁 ) ∘ ( 𝑅𝑟 𝑀 ) ) = ( 𝑅𝑟 ( 𝑁 + 𝑀 ) ) ↔ ( ( 𝑅𝑟 𝑁 ) ∘ ( 𝑅𝑟 𝑀 ) ) = ( 𝑅𝑟 ( 𝑁 + 𝑀 ) ) ) )
127 116 126 mpbird ( ( ( 𝑁 = 0 ∧ 𝑀 = 1 ) ∧ ( 𝑅𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → ( ( 𝑅𝑟 𝑁 ) ∘ ( 𝑅𝑟 𝑀 ) ) = ( 𝑅𝑟 ( 𝑁 + 𝑀 ) ) )
128 127 exp43 ( 𝑁 = 0 → ( 𝑀 = 1 → ( 𝑅𝑉 → ( ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) → ( ( 𝑅𝑟 𝑁 ) ∘ ( 𝑅𝑟 𝑀 ) ) = ( 𝑅𝑟 ( 𝑁 + 𝑀 ) ) ) ) ) )
129 128 com12 ( 𝑀 = 1 → ( 𝑁 = 0 → ( 𝑅𝑉 → ( ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) → ( ( 𝑅𝑟 𝑁 ) ∘ ( 𝑅𝑟 𝑀 ) ) = ( 𝑅𝑟 ( 𝑁 + 𝑀 ) ) ) ) ) )
130 coires1 ( ( 𝑅𝑟 𝑀 ) ∘ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) = ( ( 𝑅𝑟 𝑀 ) ↾ ( dom 𝑅 ∪ ran 𝑅 ) )
131 simp2 ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ ‘ 2 ) ∧ 𝑅𝑉 ) → 𝑀 ∈ ( ℤ ‘ 2 ) )
132 simp3 ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ ‘ 2 ) ∧ 𝑅𝑉 ) → 𝑅𝑉 )
133 132 92 syl ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ ‘ 2 ) ∧ 𝑅𝑉 ) → 𝑅 ∈ V )
134 relexpuzrel ( ( 𝑀 ∈ ( ℤ ‘ 2 ) ∧ 𝑅 ∈ V ) → Rel ( 𝑅𝑟 𝑀 ) )
135 131 133 134 syl2anc ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ ‘ 2 ) ∧ 𝑅𝑉 ) → Rel ( 𝑅𝑟 𝑀 ) )
136 eluz2nn ( 𝑀 ∈ ( ℤ ‘ 2 ) → 𝑀 ∈ ℕ )
137 131 136 syl ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ ‘ 2 ) ∧ 𝑅𝑉 ) → 𝑀 ∈ ℕ )
138 relexpnndm ( ( 𝑀 ∈ ℕ ∧ 𝑅 ∈ V ) → dom ( 𝑅𝑟 𝑀 ) ⊆ dom 𝑅 )
139 137 133 138 syl2anc ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ ‘ 2 ) ∧ 𝑅𝑉 ) → dom ( 𝑅𝑟 𝑀 ) ⊆ dom 𝑅 )
140 139 79 sstrdi ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ ‘ 2 ) ∧ 𝑅𝑉 ) → dom ( 𝑅𝑟 𝑀 ) ⊆ ( dom 𝑅 ∪ ran 𝑅 ) )
141 relssres ( ( Rel ( 𝑅𝑟 𝑀 ) ∧ dom ( 𝑅𝑟 𝑀 ) ⊆ ( dom 𝑅 ∪ ran 𝑅 ) ) → ( ( 𝑅𝑟 𝑀 ) ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) = ( 𝑅𝑟 𝑀 ) )
142 135 140 141 syl2anc ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ ‘ 2 ) ∧ 𝑅𝑉 ) → ( ( 𝑅𝑟 𝑀 ) ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) = ( 𝑅𝑟 𝑀 ) )
143 130 142 syl5eq ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ ‘ 2 ) ∧ 𝑅𝑉 ) → ( ( 𝑅𝑟 𝑀 ) ∘ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) = ( 𝑅𝑟 𝑀 ) )
144 simp1 ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ ‘ 2 ) ∧ 𝑅𝑉 ) → 𝑁 = 0 )
145 144 oveq2d ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ ‘ 2 ) ∧ 𝑅𝑉 ) → ( 𝑅𝑟 𝑁 ) = ( 𝑅𝑟 0 ) )
146 133 103 syl ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ ‘ 2 ) ∧ 𝑅𝑉 ) → ( 𝑅𝑟 0 ) = ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) )
147 145 146 eqtrd ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ ‘ 2 ) ∧ 𝑅𝑉 ) → ( 𝑅𝑟 𝑁 ) = ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) )
148 147 coeq2d ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ ‘ 2 ) ∧ 𝑅𝑉 ) → ( ( 𝑅𝑟 𝑀 ) ∘ ( 𝑅𝑟 𝑁 ) ) = ( ( 𝑅𝑟 𝑀 ) ∘ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) )
149 144 oveq1d ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ ‘ 2 ) ∧ 𝑅𝑉 ) → ( 𝑁 + 𝑀 ) = ( 0 + 𝑀 ) )
150 eluzelcn ( 𝑀 ∈ ( ℤ ‘ 2 ) → 𝑀 ∈ ℂ )
151 131 150 syl ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ ‘ 2 ) ∧ 𝑅𝑉 ) → 𝑀 ∈ ℂ )
152 151 addid2d ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ ‘ 2 ) ∧ 𝑅𝑉 ) → ( 0 + 𝑀 ) = 𝑀 )
153 149 152 eqtrd ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ ‘ 2 ) ∧ 𝑅𝑉 ) → ( 𝑁 + 𝑀 ) = 𝑀 )
154 153 oveq2d ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ ‘ 2 ) ∧ 𝑅𝑉 ) → ( 𝑅𝑟 ( 𝑁 + 𝑀 ) ) = ( 𝑅𝑟 𝑀 ) )
155 143 148 154 3eqtr4d ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ ‘ 2 ) ∧ 𝑅𝑉 ) → ( ( 𝑅𝑟 𝑀 ) ∘ ( 𝑅𝑟 𝑁 ) ) = ( 𝑅𝑟 ( 𝑁 + 𝑀 ) ) )
156 nnnn0 ( 𝑀 ∈ ℕ → 𝑀 ∈ ℕ0 )
157 131 136 156 3syl ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ ‘ 2 ) ∧ 𝑅𝑉 ) → 𝑀 ∈ ℕ0 )
158 157 132 89 syl2anc ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ ‘ 2 ) ∧ 𝑅𝑉 ) → ( 𝑅𝑟 𝑀 ) = ( 𝑅𝑟 𝑀 ) )
159 144 98 eqeltrdi ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ ‘ 2 ) ∧ 𝑅𝑉 ) → 𝑁 ∈ ℕ0 )
160 159 132 100 syl2anc ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ ‘ 2 ) ∧ 𝑅𝑉 ) → ( 𝑅𝑟 𝑁 ) = ( 𝑅𝑟 𝑁 ) )
161 158 160 coeq12d ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ ‘ 2 ) ∧ 𝑅𝑉 ) → ( ( 𝑅𝑟 𝑀 ) ∘ ( 𝑅𝑟 𝑁 ) ) = ( ( 𝑅𝑟 𝑀 ) ∘ ( 𝑅𝑟 𝑁 ) ) )
162 84 161 syl5eq ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ ‘ 2 ) ∧ 𝑅𝑉 ) → ( ( 𝑅𝑟 𝑁 ) ∘ ( 𝑅𝑟 𝑀 ) ) = ( ( 𝑅𝑟 𝑀 ) ∘ ( 𝑅𝑟 𝑁 ) ) )
163 159 157 nn0addcld ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ ‘ 2 ) ∧ 𝑅𝑉 ) → ( 𝑁 + 𝑀 ) ∈ ℕ0 )
164 163 132 109 syl2anc ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ ‘ 2 ) ∧ 𝑅𝑉 ) → ( 𝑅𝑟 ( 𝑁 + 𝑀 ) ) = ( 𝑅𝑟 ( 𝑁 + 𝑀 ) ) )
165 155 162 164 3eqtr4d ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ ‘ 2 ) ∧ 𝑅𝑉 ) → ( ( 𝑅𝑟 𝑁 ) ∘ ( 𝑅𝑟 𝑀 ) ) = ( 𝑅𝑟 ( 𝑁 + 𝑀 ) ) )
166 159 nn0cnd ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ ‘ 2 ) ∧ 𝑅𝑉 ) → 𝑁 ∈ ℂ )
167 151 166 addcomd ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ ‘ 2 ) ∧ 𝑅𝑉 ) → ( 𝑀 + 𝑁 ) = ( 𝑁 + 𝑀 ) )
168 uzaddcl ( ( 𝑀 ∈ ( ℤ ‘ 2 ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝑀 + 𝑁 ) ∈ ( ℤ ‘ 2 ) )
169 131 159 168 syl2anc ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ ‘ 2 ) ∧ 𝑅𝑉 ) → ( 𝑀 + 𝑁 ) ∈ ( ℤ ‘ 2 ) )
170 167 169 eqeltrrd ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ ‘ 2 ) ∧ 𝑅𝑉 ) → ( 𝑁 + 𝑀 ) ∈ ( ℤ ‘ 2 ) )
171 relexpuzrel ( ( ( 𝑁 + 𝑀 ) ∈ ( ℤ ‘ 2 ) ∧ 𝑅𝑉 ) → Rel ( 𝑅𝑟 ( 𝑁 + 𝑀 ) ) )
172 170 132 171 syl2anc ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ ‘ 2 ) ∧ 𝑅𝑉 ) → Rel ( 𝑅𝑟 ( 𝑁 + 𝑀 ) ) )
173 117 172 125 sylancr ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ ‘ 2 ) ∧ 𝑅𝑉 ) → ( ( ( 𝑅𝑟 𝑁 ) ∘ ( 𝑅𝑟 𝑀 ) ) = ( 𝑅𝑟 ( 𝑁 + 𝑀 ) ) ↔ ( ( 𝑅𝑟 𝑁 ) ∘ ( 𝑅𝑟 𝑀 ) ) = ( 𝑅𝑟 ( 𝑁 + 𝑀 ) ) ) )
174 165 173 mpbird ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ ‘ 2 ) ∧ 𝑅𝑉 ) → ( ( 𝑅𝑟 𝑁 ) ∘ ( 𝑅𝑟 𝑀 ) ) = ( 𝑅𝑟 ( 𝑁 + 𝑀 ) ) )
175 174 a1d ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ ‘ 2 ) ∧ 𝑅𝑉 ) → ( ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) → ( ( 𝑅𝑟 𝑁 ) ∘ ( 𝑅𝑟 𝑀 ) ) = ( 𝑅𝑟 ( 𝑁 + 𝑀 ) ) ) )
176 175 3exp ( 𝑁 = 0 → ( 𝑀 ∈ ( ℤ ‘ 2 ) → ( 𝑅𝑉 → ( ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) → ( ( 𝑅𝑟 𝑁 ) ∘ ( 𝑅𝑟 𝑀 ) ) = ( 𝑅𝑟 ( 𝑁 + 𝑀 ) ) ) ) ) )
177 176 com12 ( 𝑀 ∈ ( ℤ ‘ 2 ) → ( 𝑁 = 0 → ( 𝑅𝑉 → ( ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) → ( ( 𝑅𝑟 𝑁 ) ∘ ( 𝑅𝑟 𝑀 ) ) = ( 𝑅𝑟 ( 𝑁 + 𝑀 ) ) ) ) ) )
178 129 177 jaoi ( ( 𝑀 = 1 ∨ 𝑀 ∈ ( ℤ ‘ 2 ) ) → ( 𝑁 = 0 → ( 𝑅𝑉 → ( ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) → ( ( 𝑅𝑟 𝑁 ) ∘ ( 𝑅𝑟 𝑀 ) ) = ( 𝑅𝑟 ( 𝑁 + 𝑀 ) ) ) ) ) )
179 76 178 sylbi ( 𝑀 ∈ ℕ → ( 𝑁 = 0 → ( 𝑅𝑉 → ( ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) → ( ( 𝑅𝑟 𝑁 ) ∘ ( 𝑅𝑟 𝑀 ) ) = ( 𝑅𝑟 ( 𝑁 + 𝑀 ) ) ) ) ) )
180 coires1 ( ( 𝑅𝑟 0 ) ∘ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) = ( ( 𝑅𝑟 0 ) ↾ ( dom 𝑅 ∪ ran 𝑅 ) )
181 simp3 ( ( 𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅𝑉 ) → 𝑅𝑉 )
182 relexp0rel ( 𝑅𝑉 → Rel ( 𝑅𝑟 0 ) )
183 181 182 syl ( ( 𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅𝑉 ) → Rel ( 𝑅𝑟 0 ) )
184 181 33 syl ( ( 𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅𝑉 ) → ( 𝑅𝑟 0 ) = ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) )
185 184 dmeqd ( ( 𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅𝑉 ) → dom ( 𝑅𝑟 0 ) = dom ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) )
186 dmresi dom ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) = ( dom 𝑅 ∪ ran 𝑅 )
187 185 186 eqtrdi ( ( 𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅𝑉 ) → dom ( 𝑅𝑟 0 ) = ( dom 𝑅 ∪ ran 𝑅 ) )
188 eqimss ( dom ( 𝑅𝑟 0 ) = ( dom 𝑅 ∪ ran 𝑅 ) → dom ( 𝑅𝑟 0 ) ⊆ ( dom 𝑅 ∪ ran 𝑅 ) )
189 187 188 syl ( ( 𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅𝑉 ) → dom ( 𝑅𝑟 0 ) ⊆ ( dom 𝑅 ∪ ran 𝑅 ) )
190 relssres ( ( Rel ( 𝑅𝑟 0 ) ∧ dom ( 𝑅𝑟 0 ) ⊆ ( dom 𝑅 ∪ ran 𝑅 ) ) → ( ( 𝑅𝑟 0 ) ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) = ( 𝑅𝑟 0 ) )
191 183 189 190 syl2anc ( ( 𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅𝑉 ) → ( ( 𝑅𝑟 0 ) ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) = ( 𝑅𝑟 0 ) )
192 180 191 syl5eq ( ( 𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅𝑉 ) → ( ( 𝑅𝑟 0 ) ∘ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) = ( 𝑅𝑟 0 ) )
193 simp1 ( ( 𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅𝑉 ) → 𝑁 = 0 )
194 193 oveq2d ( ( 𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅𝑉 ) → ( 𝑅𝑟 𝑁 ) = ( 𝑅𝑟 0 ) )
195 simp2 ( ( 𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅𝑉 ) → 𝑀 = 0 )
196 195 oveq2d ( ( 𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅𝑉 ) → ( 𝑅𝑟 𝑀 ) = ( 𝑅𝑟 0 ) )
197 196 184 eqtrd ( ( 𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅𝑉 ) → ( 𝑅𝑟 𝑀 ) = ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) )
198 194 197 coeq12d ( ( 𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅𝑉 ) → ( ( 𝑅𝑟 𝑁 ) ∘ ( 𝑅𝑟 𝑀 ) ) = ( ( 𝑅𝑟 0 ) ∘ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) )
199 193 195 oveq12d ( ( 𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅𝑉 ) → ( 𝑁 + 𝑀 ) = ( 0 + 0 ) )
200 00id ( 0 + 0 ) = 0
201 199 200 eqtrdi ( ( 𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅𝑉 ) → ( 𝑁 + 𝑀 ) = 0 )
202 201 oveq2d ( ( 𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅𝑉 ) → ( 𝑅𝑟 ( 𝑁 + 𝑀 ) ) = ( 𝑅𝑟 0 ) )
203 192 198 202 3eqtr4d ( ( 𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅𝑉 ) → ( ( 𝑅𝑟 𝑁 ) ∘ ( 𝑅𝑟 𝑀 ) ) = ( 𝑅𝑟 ( 𝑁 + 𝑀 ) ) )
204 203 a1d ( ( 𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅𝑉 ) → ( ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) → ( ( 𝑅𝑟 𝑁 ) ∘ ( 𝑅𝑟 𝑀 ) ) = ( 𝑅𝑟 ( 𝑁 + 𝑀 ) ) ) )
205 204 3exp ( 𝑁 = 0 → ( 𝑀 = 0 → ( 𝑅𝑉 → ( ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) → ( ( 𝑅𝑟 𝑁 ) ∘ ( 𝑅𝑟 𝑀 ) ) = ( 𝑅𝑟 ( 𝑁 + 𝑀 ) ) ) ) ) )
206 205 com12 ( 𝑀 = 0 → ( 𝑁 = 0 → ( 𝑅𝑉 → ( ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) → ( ( 𝑅𝑟 𝑁 ) ∘ ( 𝑅𝑟 𝑀 ) ) = ( 𝑅𝑟 ( 𝑁 + 𝑀 ) ) ) ) ) )
207 179 206 jaoi ( ( 𝑀 ∈ ℕ ∨ 𝑀 = 0 ) → ( 𝑁 = 0 → ( 𝑅𝑉 → ( ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) → ( ( 𝑅𝑟 𝑁 ) ∘ ( 𝑅𝑟 𝑀 ) ) = ( 𝑅𝑟 ( 𝑁 + 𝑀 ) ) ) ) ) )
208 2 207 sylbi ( 𝑀 ∈ ℕ0 → ( 𝑁 = 0 → ( 𝑅𝑉 → ( ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) → ( ( 𝑅𝑟 𝑁 ) ∘ ( 𝑅𝑟 𝑀 ) ) = ( 𝑅𝑟 ( 𝑁 + 𝑀 ) ) ) ) ) )
209 208 com12 ( 𝑁 = 0 → ( 𝑀 ∈ ℕ0 → ( 𝑅𝑉 → ( ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) → ( ( 𝑅𝑟 𝑁 ) ∘ ( 𝑅𝑟 𝑀 ) ) = ( 𝑅𝑟 ( 𝑁 + 𝑀 ) ) ) ) ) )
210 209 3impd ( 𝑁 = 0 → ( ( 𝑀 ∈ ℕ0𝑅𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) → ( ( 𝑅𝑟 𝑁 ) ∘ ( 𝑅𝑟 𝑀 ) ) = ( 𝑅𝑟 ( 𝑁 + 𝑀 ) ) ) )
211 75 210 jaoi ( ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) → ( ( 𝑀 ∈ ℕ0𝑅𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) → ( ( 𝑅𝑟 𝑁 ) ∘ ( 𝑅𝑟 𝑀 ) ) = ( 𝑅𝑟 ( 𝑁 + 𝑀 ) ) ) )
212 1 211 sylbi ( 𝑁 ∈ ℕ0 → ( ( 𝑀 ∈ ℕ0𝑅𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) → ( ( 𝑅𝑟 𝑁 ) ∘ ( 𝑅𝑟 𝑀 ) ) = ( 𝑅𝑟 ( 𝑁 + 𝑀 ) ) ) )
213 212 imp ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑀 ∈ ℕ0𝑅𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → ( ( 𝑅𝑟 𝑁 ) ∘ ( 𝑅𝑟 𝑀 ) ) = ( 𝑅𝑟 ( 𝑁 + 𝑀 ) ) )