Step |
Hyp |
Ref |
Expression |
1 |
|
elnn0 |
⊢ ( 𝑁 ∈ ℕ0 ↔ ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ) |
2 |
|
elnn0 |
⊢ ( 𝑀 ∈ ℕ0 ↔ ( 𝑀 ∈ ℕ ∨ 𝑀 = 0 ) ) |
3 |
|
relexpaddnn |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ) → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) = ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) |
4 |
3
|
a1d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ) → ( ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) = ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) ) |
5 |
4
|
3exp |
⊢ ( 𝑁 ∈ ℕ → ( 𝑀 ∈ ℕ → ( 𝑅 ∈ 𝑉 → ( ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) = ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) ) ) ) |
6 |
5
|
com12 |
⊢ ( 𝑀 ∈ ℕ → ( 𝑁 ∈ ℕ → ( 𝑅 ∈ 𝑉 → ( ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) = ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) ) ) ) |
7 |
|
elnn1uz2 |
⊢ ( 𝑁 ∈ ℕ ↔ ( 𝑁 = 1 ∨ 𝑁 ∈ ( ℤ≥ ‘ 2 ) ) ) |
8 |
|
coires1 |
⊢ ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) = ( ( 𝑅 ↑𝑟 𝑁 ) ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) |
9 |
|
simpll |
⊢ ( ( ( 𝑁 = 1 ∧ 𝑀 = 0 ) ∧ ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → 𝑁 = 1 ) |
10 |
|
simplr |
⊢ ( ( ( 𝑁 = 1 ∧ 𝑀 = 0 ) ∧ ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → 𝑀 = 0 ) |
11 |
9 10
|
oveq12d |
⊢ ( ( ( 𝑁 = 1 ∧ 𝑀 = 0 ) ∧ ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → ( 𝑁 + 𝑀 ) = ( 1 + 0 ) ) |
12 |
|
1p0e1 |
⊢ ( 1 + 0 ) = 1 |
13 |
11 12
|
eqtrdi |
⊢ ( ( ( 𝑁 = 1 ∧ 𝑀 = 0 ) ∧ ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → ( 𝑁 + 𝑀 ) = 1 ) |
14 |
|
simprr |
⊢ ( ( ( 𝑁 = 1 ∧ 𝑀 = 0 ) ∧ ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) |
15 |
13 14
|
mpd |
⊢ ( ( ( 𝑁 = 1 ∧ 𝑀 = 0 ) ∧ ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → Rel 𝑅 ) |
16 |
9
|
oveq2d |
⊢ ( ( ( 𝑁 = 1 ∧ 𝑀 = 0 ) ∧ ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → ( 𝑅 ↑𝑟 𝑁 ) = ( 𝑅 ↑𝑟 1 ) ) |
17 |
|
simprl |
⊢ ( ( ( 𝑁 = 1 ∧ 𝑀 = 0 ) ∧ ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → 𝑅 ∈ 𝑉 ) |
18 |
|
relexp1g |
⊢ ( 𝑅 ∈ 𝑉 → ( 𝑅 ↑𝑟 1 ) = 𝑅 ) |
19 |
17 18
|
syl |
⊢ ( ( ( 𝑁 = 1 ∧ 𝑀 = 0 ) ∧ ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → ( 𝑅 ↑𝑟 1 ) = 𝑅 ) |
20 |
16 19
|
eqtrd |
⊢ ( ( ( 𝑁 = 1 ∧ 𝑀 = 0 ) ∧ ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → ( 𝑅 ↑𝑟 𝑁 ) = 𝑅 ) |
21 |
20
|
releqd |
⊢ ( ( ( 𝑁 = 1 ∧ 𝑀 = 0 ) ∧ ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → ( Rel ( 𝑅 ↑𝑟 𝑁 ) ↔ Rel 𝑅 ) ) |
22 |
15 21
|
mpbird |
⊢ ( ( ( 𝑁 = 1 ∧ 𝑀 = 0 ) ∧ ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → Rel ( 𝑅 ↑𝑟 𝑁 ) ) |
23 |
|
1nn |
⊢ 1 ∈ ℕ |
24 |
9 23
|
eqeltrdi |
⊢ ( ( ( 𝑁 = 1 ∧ 𝑀 = 0 ) ∧ ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → 𝑁 ∈ ℕ ) |
25 |
|
relexpnndm |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ) → dom ( 𝑅 ↑𝑟 𝑁 ) ⊆ dom 𝑅 ) |
26 |
24 17 25
|
syl2anc |
⊢ ( ( ( 𝑁 = 1 ∧ 𝑀 = 0 ) ∧ ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → dom ( 𝑅 ↑𝑟 𝑁 ) ⊆ dom 𝑅 ) |
27 |
|
ssun1 |
⊢ dom 𝑅 ⊆ ( dom 𝑅 ∪ ran 𝑅 ) |
28 |
26 27
|
sstrdi |
⊢ ( ( ( 𝑁 = 1 ∧ 𝑀 = 0 ) ∧ ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → dom ( 𝑅 ↑𝑟 𝑁 ) ⊆ ( dom 𝑅 ∪ ran 𝑅 ) ) |
29 |
|
relssres |
⊢ ( ( Rel ( 𝑅 ↑𝑟 𝑁 ) ∧ dom ( 𝑅 ↑𝑟 𝑁 ) ⊆ ( dom 𝑅 ∪ ran 𝑅 ) ) → ( ( 𝑅 ↑𝑟 𝑁 ) ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) = ( 𝑅 ↑𝑟 𝑁 ) ) |
30 |
22 28 29
|
syl2anc |
⊢ ( ( ( 𝑁 = 1 ∧ 𝑀 = 0 ) ∧ ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → ( ( 𝑅 ↑𝑟 𝑁 ) ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) = ( 𝑅 ↑𝑟 𝑁 ) ) |
31 |
8 30
|
eqtrid |
⊢ ( ( ( 𝑁 = 1 ∧ 𝑀 = 0 ) ∧ ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) = ( 𝑅 ↑𝑟 𝑁 ) ) |
32 |
10
|
oveq2d |
⊢ ( ( ( 𝑁 = 1 ∧ 𝑀 = 0 ) ∧ ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → ( 𝑅 ↑𝑟 𝑀 ) = ( 𝑅 ↑𝑟 0 ) ) |
33 |
|
relexp0g |
⊢ ( 𝑅 ∈ 𝑉 → ( 𝑅 ↑𝑟 0 ) = ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) |
34 |
17 33
|
syl |
⊢ ( ( ( 𝑁 = 1 ∧ 𝑀 = 0 ) ∧ ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → ( 𝑅 ↑𝑟 0 ) = ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) |
35 |
32 34
|
eqtrd |
⊢ ( ( ( 𝑁 = 1 ∧ 𝑀 = 0 ) ∧ ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → ( 𝑅 ↑𝑟 𝑀 ) = ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) |
36 |
35
|
coeq2d |
⊢ ( ( ( 𝑁 = 1 ∧ 𝑀 = 0 ) ∧ ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) = ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) ) |
37 |
10
|
oveq2d |
⊢ ( ( ( 𝑁 = 1 ∧ 𝑀 = 0 ) ∧ ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → ( 𝑁 + 𝑀 ) = ( 𝑁 + 0 ) ) |
38 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
39 |
9 38
|
eqeltrdi |
⊢ ( ( ( 𝑁 = 1 ∧ 𝑀 = 0 ) ∧ ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → 𝑁 ∈ ℂ ) |
40 |
39
|
addid1d |
⊢ ( ( ( 𝑁 = 1 ∧ 𝑀 = 0 ) ∧ ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → ( 𝑁 + 0 ) = 𝑁 ) |
41 |
37 40
|
eqtrd |
⊢ ( ( ( 𝑁 = 1 ∧ 𝑀 = 0 ) ∧ ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → ( 𝑁 + 𝑀 ) = 𝑁 ) |
42 |
41
|
oveq2d |
⊢ ( ( ( 𝑁 = 1 ∧ 𝑀 = 0 ) ∧ ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) = ( 𝑅 ↑𝑟 𝑁 ) ) |
43 |
31 36 42
|
3eqtr4d |
⊢ ( ( ( 𝑁 = 1 ∧ 𝑀 = 0 ) ∧ ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) = ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) |
44 |
43
|
exp43 |
⊢ ( 𝑁 = 1 → ( 𝑀 = 0 → ( 𝑅 ∈ 𝑉 → ( ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) = ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) ) ) ) |
45 |
|
simp1 |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → 𝑁 ∈ ( ℤ≥ ‘ 2 ) ) |
46 |
|
simp3 |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → 𝑅 ∈ 𝑉 ) |
47 |
|
relexpuzrel |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑅 ∈ 𝑉 ) → Rel ( 𝑅 ↑𝑟 𝑁 ) ) |
48 |
45 46 47
|
syl2anc |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → Rel ( 𝑅 ↑𝑟 𝑁 ) ) |
49 |
|
eluz2nn |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → 𝑁 ∈ ℕ ) |
50 |
45 49
|
syl |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → 𝑁 ∈ ℕ ) |
51 |
50 46 25
|
syl2anc |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → dom ( 𝑅 ↑𝑟 𝑁 ) ⊆ dom 𝑅 ) |
52 |
51 27
|
sstrdi |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → dom ( 𝑅 ↑𝑟 𝑁 ) ⊆ ( dom 𝑅 ∪ ran 𝑅 ) ) |
53 |
48 52 29
|
syl2anc |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → ( ( 𝑅 ↑𝑟 𝑁 ) ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) = ( 𝑅 ↑𝑟 𝑁 ) ) |
54 |
8 53
|
eqtrid |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) = ( 𝑅 ↑𝑟 𝑁 ) ) |
55 |
|
simp2 |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → 𝑀 = 0 ) |
56 |
55
|
oveq2d |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → ( 𝑅 ↑𝑟 𝑀 ) = ( 𝑅 ↑𝑟 0 ) ) |
57 |
46 33
|
syl |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → ( 𝑅 ↑𝑟 0 ) = ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) |
58 |
56 57
|
eqtrd |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → ( 𝑅 ↑𝑟 𝑀 ) = ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) |
59 |
58
|
coeq2d |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) = ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) ) |
60 |
55
|
oveq2d |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → ( 𝑁 + 𝑀 ) = ( 𝑁 + 0 ) ) |
61 |
|
eluzelcn |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → 𝑁 ∈ ℂ ) |
62 |
45 61
|
syl |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → 𝑁 ∈ ℂ ) |
63 |
62
|
addid1d |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → ( 𝑁 + 0 ) = 𝑁 ) |
64 |
60 63
|
eqtrd |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → ( 𝑁 + 𝑀 ) = 𝑁 ) |
65 |
64
|
oveq2d |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) = ( 𝑅 ↑𝑟 𝑁 ) ) |
66 |
54 59 65
|
3eqtr4d |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) = ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) |
67 |
66
|
a1d |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → ( ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) = ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) ) |
68 |
67
|
3exp |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑀 = 0 → ( 𝑅 ∈ 𝑉 → ( ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) = ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) ) ) ) |
69 |
44 68
|
jaoi |
⊢ ( ( 𝑁 = 1 ∨ 𝑁 ∈ ( ℤ≥ ‘ 2 ) ) → ( 𝑀 = 0 → ( 𝑅 ∈ 𝑉 → ( ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) = ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) ) ) ) |
70 |
7 69
|
sylbi |
⊢ ( 𝑁 ∈ ℕ → ( 𝑀 = 0 → ( 𝑅 ∈ 𝑉 → ( ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) = ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) ) ) ) |
71 |
70
|
com12 |
⊢ ( 𝑀 = 0 → ( 𝑁 ∈ ℕ → ( 𝑅 ∈ 𝑉 → ( ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) = ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) ) ) ) |
72 |
6 71
|
jaoi |
⊢ ( ( 𝑀 ∈ ℕ ∨ 𝑀 = 0 ) → ( 𝑁 ∈ ℕ → ( 𝑅 ∈ 𝑉 → ( ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) = ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) ) ) ) |
73 |
2 72
|
sylbi |
⊢ ( 𝑀 ∈ ℕ0 → ( 𝑁 ∈ ℕ → ( 𝑅 ∈ 𝑉 → ( ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) = ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) ) ) ) |
74 |
73
|
com12 |
⊢ ( 𝑁 ∈ ℕ → ( 𝑀 ∈ ℕ0 → ( 𝑅 ∈ 𝑉 → ( ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) = ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) ) ) ) |
75 |
74
|
3impd |
⊢ ( 𝑁 ∈ ℕ → ( ( 𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) = ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) ) |
76 |
|
elnn1uz2 |
⊢ ( 𝑀 ∈ ℕ ↔ ( 𝑀 = 1 ∨ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ) ) |
77 |
|
coires1 |
⊢ ( ◡ 𝑅 ∘ ( I ↾ ( dom ◡ 𝑅 ∪ ran ◡ 𝑅 ) ) ) = ( ◡ 𝑅 ↾ ( dom ◡ 𝑅 ∪ ran ◡ 𝑅 ) ) |
78 |
|
relcnv |
⊢ Rel ◡ 𝑅 |
79 |
|
ssun1 |
⊢ dom ◡ 𝑅 ⊆ ( dom ◡ 𝑅 ∪ ran ◡ 𝑅 ) |
80 |
78 79
|
pm3.2i |
⊢ ( Rel ◡ 𝑅 ∧ dom ◡ 𝑅 ⊆ ( dom ◡ 𝑅 ∪ ran ◡ 𝑅 ) ) |
81 |
|
relssres |
⊢ ( ( Rel ◡ 𝑅 ∧ dom ◡ 𝑅 ⊆ ( dom ◡ 𝑅 ∪ ran ◡ 𝑅 ) ) → ( ◡ 𝑅 ↾ ( dom ◡ 𝑅 ∪ ran ◡ 𝑅 ) ) = ◡ 𝑅 ) |
82 |
80 81
|
mp1i |
⊢ ( ( ( 𝑁 = 0 ∧ 𝑀 = 1 ) ∧ ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → ( ◡ 𝑅 ↾ ( dom ◡ 𝑅 ∪ ran ◡ 𝑅 ) ) = ◡ 𝑅 ) |
83 |
77 82
|
eqtrid |
⊢ ( ( ( 𝑁 = 0 ∧ 𝑀 = 1 ) ∧ ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → ( ◡ 𝑅 ∘ ( I ↾ ( dom ◡ 𝑅 ∪ ran ◡ 𝑅 ) ) ) = ◡ 𝑅 ) |
84 |
|
cnvco |
⊢ ◡ ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) = ( ◡ ( 𝑅 ↑𝑟 𝑀 ) ∘ ◡ ( 𝑅 ↑𝑟 𝑁 ) ) |
85 |
|
simplr |
⊢ ( ( ( 𝑁 = 0 ∧ 𝑀 = 1 ) ∧ ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → 𝑀 = 1 ) |
86 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
87 |
85 86
|
eqeltrdi |
⊢ ( ( ( 𝑁 = 0 ∧ 𝑀 = 1 ) ∧ ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → 𝑀 ∈ ℕ0 ) |
88 |
|
simprl |
⊢ ( ( ( 𝑁 = 0 ∧ 𝑀 = 1 ) ∧ ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → 𝑅 ∈ 𝑉 ) |
89 |
|
relexpcnv |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ) → ◡ ( 𝑅 ↑𝑟 𝑀 ) = ( ◡ 𝑅 ↑𝑟 𝑀 ) ) |
90 |
87 88 89
|
syl2anc |
⊢ ( ( ( 𝑁 = 0 ∧ 𝑀 = 1 ) ∧ ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → ◡ ( 𝑅 ↑𝑟 𝑀 ) = ( ◡ 𝑅 ↑𝑟 𝑀 ) ) |
91 |
85
|
oveq2d |
⊢ ( ( ( 𝑁 = 0 ∧ 𝑀 = 1 ) ∧ ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → ( ◡ 𝑅 ↑𝑟 𝑀 ) = ( ◡ 𝑅 ↑𝑟 1 ) ) |
92 |
|
cnvexg |
⊢ ( 𝑅 ∈ 𝑉 → ◡ 𝑅 ∈ V ) |
93 |
88 92
|
syl |
⊢ ( ( ( 𝑁 = 0 ∧ 𝑀 = 1 ) ∧ ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → ◡ 𝑅 ∈ V ) |
94 |
|
relexp1g |
⊢ ( ◡ 𝑅 ∈ V → ( ◡ 𝑅 ↑𝑟 1 ) = ◡ 𝑅 ) |
95 |
93 94
|
syl |
⊢ ( ( ( 𝑁 = 0 ∧ 𝑀 = 1 ) ∧ ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → ( ◡ 𝑅 ↑𝑟 1 ) = ◡ 𝑅 ) |
96 |
90 91 95
|
3eqtrd |
⊢ ( ( ( 𝑁 = 0 ∧ 𝑀 = 1 ) ∧ ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → ◡ ( 𝑅 ↑𝑟 𝑀 ) = ◡ 𝑅 ) |
97 |
|
simpll |
⊢ ( ( ( 𝑁 = 0 ∧ 𝑀 = 1 ) ∧ ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → 𝑁 = 0 ) |
98 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
99 |
97 98
|
eqeltrdi |
⊢ ( ( ( 𝑁 = 0 ∧ 𝑀 = 1 ) ∧ ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → 𝑁 ∈ ℕ0 ) |
100 |
|
relexpcnv |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ) → ◡ ( 𝑅 ↑𝑟 𝑁 ) = ( ◡ 𝑅 ↑𝑟 𝑁 ) ) |
101 |
99 88 100
|
syl2anc |
⊢ ( ( ( 𝑁 = 0 ∧ 𝑀 = 1 ) ∧ ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → ◡ ( 𝑅 ↑𝑟 𝑁 ) = ( ◡ 𝑅 ↑𝑟 𝑁 ) ) |
102 |
97
|
oveq2d |
⊢ ( ( ( 𝑁 = 0 ∧ 𝑀 = 1 ) ∧ ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → ( ◡ 𝑅 ↑𝑟 𝑁 ) = ( ◡ 𝑅 ↑𝑟 0 ) ) |
103 |
|
relexp0g |
⊢ ( ◡ 𝑅 ∈ V → ( ◡ 𝑅 ↑𝑟 0 ) = ( I ↾ ( dom ◡ 𝑅 ∪ ran ◡ 𝑅 ) ) ) |
104 |
93 103
|
syl |
⊢ ( ( ( 𝑁 = 0 ∧ 𝑀 = 1 ) ∧ ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → ( ◡ 𝑅 ↑𝑟 0 ) = ( I ↾ ( dom ◡ 𝑅 ∪ ran ◡ 𝑅 ) ) ) |
105 |
101 102 104
|
3eqtrd |
⊢ ( ( ( 𝑁 = 0 ∧ 𝑀 = 1 ) ∧ ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → ◡ ( 𝑅 ↑𝑟 𝑁 ) = ( I ↾ ( dom ◡ 𝑅 ∪ ran ◡ 𝑅 ) ) ) |
106 |
96 105
|
coeq12d |
⊢ ( ( ( 𝑁 = 0 ∧ 𝑀 = 1 ) ∧ ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → ( ◡ ( 𝑅 ↑𝑟 𝑀 ) ∘ ◡ ( 𝑅 ↑𝑟 𝑁 ) ) = ( ◡ 𝑅 ∘ ( I ↾ ( dom ◡ 𝑅 ∪ ran ◡ 𝑅 ) ) ) ) |
107 |
84 106
|
eqtrid |
⊢ ( ( ( 𝑁 = 0 ∧ 𝑀 = 1 ) ∧ ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → ◡ ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) = ( ◡ 𝑅 ∘ ( I ↾ ( dom ◡ 𝑅 ∪ ran ◡ 𝑅 ) ) ) ) |
108 |
99 87
|
nn0addcld |
⊢ ( ( ( 𝑁 = 0 ∧ 𝑀 = 1 ) ∧ ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → ( 𝑁 + 𝑀 ) ∈ ℕ0 ) |
109 |
|
relexpcnv |
⊢ ( ( ( 𝑁 + 𝑀 ) ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ) → ◡ ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) = ( ◡ 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) |
110 |
108 88 109
|
syl2anc |
⊢ ( ( ( 𝑁 = 0 ∧ 𝑀 = 1 ) ∧ ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → ◡ ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) = ( ◡ 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) |
111 |
97 85
|
oveq12d |
⊢ ( ( ( 𝑁 = 0 ∧ 𝑀 = 1 ) ∧ ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → ( 𝑁 + 𝑀 ) = ( 0 + 1 ) ) |
112 |
|
0p1e1 |
⊢ ( 0 + 1 ) = 1 |
113 |
111 112
|
eqtrdi |
⊢ ( ( ( 𝑁 = 0 ∧ 𝑀 = 1 ) ∧ ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → ( 𝑁 + 𝑀 ) = 1 ) |
114 |
113
|
oveq2d |
⊢ ( ( ( 𝑁 = 0 ∧ 𝑀 = 1 ) ∧ ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → ( ◡ 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) = ( ◡ 𝑅 ↑𝑟 1 ) ) |
115 |
110 114 95
|
3eqtrd |
⊢ ( ( ( 𝑁 = 0 ∧ 𝑀 = 1 ) ∧ ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → ◡ ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) = ◡ 𝑅 ) |
116 |
83 107 115
|
3eqtr4d |
⊢ ( ( ( 𝑁 = 0 ∧ 𝑀 = 1 ) ∧ ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → ◡ ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) = ◡ ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) |
117 |
|
relco |
⊢ Rel ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) |
118 |
|
simprr |
⊢ ( ( ( 𝑁 = 0 ∧ 𝑀 = 1 ) ∧ ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) |
119 |
113 118
|
mpd |
⊢ ( ( ( 𝑁 = 0 ∧ 𝑀 = 1 ) ∧ ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → Rel 𝑅 ) |
120 |
113
|
oveq2d |
⊢ ( ( ( 𝑁 = 0 ∧ 𝑀 = 1 ) ∧ ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) = ( 𝑅 ↑𝑟 1 ) ) |
121 |
88 18
|
syl |
⊢ ( ( ( 𝑁 = 0 ∧ 𝑀 = 1 ) ∧ ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → ( 𝑅 ↑𝑟 1 ) = 𝑅 ) |
122 |
120 121
|
eqtrd |
⊢ ( ( ( 𝑁 = 0 ∧ 𝑀 = 1 ) ∧ ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) = 𝑅 ) |
123 |
122
|
releqd |
⊢ ( ( ( 𝑁 = 0 ∧ 𝑀 = 1 ) ∧ ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → ( Rel ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ↔ Rel 𝑅 ) ) |
124 |
119 123
|
mpbird |
⊢ ( ( ( 𝑁 = 0 ∧ 𝑀 = 1 ) ∧ ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → Rel ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) |
125 |
|
cnveqb |
⊢ ( ( Rel ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) ∧ Rel ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) → ( ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) = ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ↔ ◡ ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) = ◡ ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) ) |
126 |
117 124 125
|
sylancr |
⊢ ( ( ( 𝑁 = 0 ∧ 𝑀 = 1 ) ∧ ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → ( ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) = ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ↔ ◡ ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) = ◡ ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) ) |
127 |
116 126
|
mpbird |
⊢ ( ( ( 𝑁 = 0 ∧ 𝑀 = 1 ) ∧ ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) = ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) |
128 |
127
|
exp43 |
⊢ ( 𝑁 = 0 → ( 𝑀 = 1 → ( 𝑅 ∈ 𝑉 → ( ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) = ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) ) ) ) |
129 |
128
|
com12 |
⊢ ( 𝑀 = 1 → ( 𝑁 = 0 → ( 𝑅 ∈ 𝑉 → ( ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) = ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) ) ) ) |
130 |
|
coires1 |
⊢ ( ( ◡ 𝑅 ↑𝑟 𝑀 ) ∘ ( I ↾ ( dom ◡ 𝑅 ∪ ran ◡ 𝑅 ) ) ) = ( ( ◡ 𝑅 ↑𝑟 𝑀 ) ↾ ( dom ◡ 𝑅 ∪ ran ◡ 𝑅 ) ) |
131 |
|
simp2 |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑅 ∈ 𝑉 ) → 𝑀 ∈ ( ℤ≥ ‘ 2 ) ) |
132 |
|
simp3 |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑅 ∈ 𝑉 ) → 𝑅 ∈ 𝑉 ) |
133 |
132 92
|
syl |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑅 ∈ 𝑉 ) → ◡ 𝑅 ∈ V ) |
134 |
|
relexpuzrel |
⊢ ( ( 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ ◡ 𝑅 ∈ V ) → Rel ( ◡ 𝑅 ↑𝑟 𝑀 ) ) |
135 |
131 133 134
|
syl2anc |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑅 ∈ 𝑉 ) → Rel ( ◡ 𝑅 ↑𝑟 𝑀 ) ) |
136 |
|
eluz2nn |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 2 ) → 𝑀 ∈ ℕ ) |
137 |
131 136
|
syl |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑅 ∈ 𝑉 ) → 𝑀 ∈ ℕ ) |
138 |
|
relexpnndm |
⊢ ( ( 𝑀 ∈ ℕ ∧ ◡ 𝑅 ∈ V ) → dom ( ◡ 𝑅 ↑𝑟 𝑀 ) ⊆ dom ◡ 𝑅 ) |
139 |
137 133 138
|
syl2anc |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑅 ∈ 𝑉 ) → dom ( ◡ 𝑅 ↑𝑟 𝑀 ) ⊆ dom ◡ 𝑅 ) |
140 |
139 79
|
sstrdi |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑅 ∈ 𝑉 ) → dom ( ◡ 𝑅 ↑𝑟 𝑀 ) ⊆ ( dom ◡ 𝑅 ∪ ran ◡ 𝑅 ) ) |
141 |
|
relssres |
⊢ ( ( Rel ( ◡ 𝑅 ↑𝑟 𝑀 ) ∧ dom ( ◡ 𝑅 ↑𝑟 𝑀 ) ⊆ ( dom ◡ 𝑅 ∪ ran ◡ 𝑅 ) ) → ( ( ◡ 𝑅 ↑𝑟 𝑀 ) ↾ ( dom ◡ 𝑅 ∪ ran ◡ 𝑅 ) ) = ( ◡ 𝑅 ↑𝑟 𝑀 ) ) |
142 |
135 140 141
|
syl2anc |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑅 ∈ 𝑉 ) → ( ( ◡ 𝑅 ↑𝑟 𝑀 ) ↾ ( dom ◡ 𝑅 ∪ ran ◡ 𝑅 ) ) = ( ◡ 𝑅 ↑𝑟 𝑀 ) ) |
143 |
130 142
|
eqtrid |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑅 ∈ 𝑉 ) → ( ( ◡ 𝑅 ↑𝑟 𝑀 ) ∘ ( I ↾ ( dom ◡ 𝑅 ∪ ran ◡ 𝑅 ) ) ) = ( ◡ 𝑅 ↑𝑟 𝑀 ) ) |
144 |
|
simp1 |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑅 ∈ 𝑉 ) → 𝑁 = 0 ) |
145 |
144
|
oveq2d |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑅 ∈ 𝑉 ) → ( ◡ 𝑅 ↑𝑟 𝑁 ) = ( ◡ 𝑅 ↑𝑟 0 ) ) |
146 |
133 103
|
syl |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑅 ∈ 𝑉 ) → ( ◡ 𝑅 ↑𝑟 0 ) = ( I ↾ ( dom ◡ 𝑅 ∪ ran ◡ 𝑅 ) ) ) |
147 |
145 146
|
eqtrd |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑅 ∈ 𝑉 ) → ( ◡ 𝑅 ↑𝑟 𝑁 ) = ( I ↾ ( dom ◡ 𝑅 ∪ ran ◡ 𝑅 ) ) ) |
148 |
147
|
coeq2d |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑅 ∈ 𝑉 ) → ( ( ◡ 𝑅 ↑𝑟 𝑀 ) ∘ ( ◡ 𝑅 ↑𝑟 𝑁 ) ) = ( ( ◡ 𝑅 ↑𝑟 𝑀 ) ∘ ( I ↾ ( dom ◡ 𝑅 ∪ ran ◡ 𝑅 ) ) ) ) |
149 |
144
|
oveq1d |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑅 ∈ 𝑉 ) → ( 𝑁 + 𝑀 ) = ( 0 + 𝑀 ) ) |
150 |
|
eluzelcn |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 2 ) → 𝑀 ∈ ℂ ) |
151 |
131 150
|
syl |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑅 ∈ 𝑉 ) → 𝑀 ∈ ℂ ) |
152 |
151
|
addid2d |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑅 ∈ 𝑉 ) → ( 0 + 𝑀 ) = 𝑀 ) |
153 |
149 152
|
eqtrd |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑅 ∈ 𝑉 ) → ( 𝑁 + 𝑀 ) = 𝑀 ) |
154 |
153
|
oveq2d |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑅 ∈ 𝑉 ) → ( ◡ 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) = ( ◡ 𝑅 ↑𝑟 𝑀 ) ) |
155 |
143 148 154
|
3eqtr4d |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑅 ∈ 𝑉 ) → ( ( ◡ 𝑅 ↑𝑟 𝑀 ) ∘ ( ◡ 𝑅 ↑𝑟 𝑁 ) ) = ( ◡ 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) |
156 |
|
nnnn0 |
⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ℕ0 ) |
157 |
131 136 156
|
3syl |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑅 ∈ 𝑉 ) → 𝑀 ∈ ℕ0 ) |
158 |
157 132 89
|
syl2anc |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑅 ∈ 𝑉 ) → ◡ ( 𝑅 ↑𝑟 𝑀 ) = ( ◡ 𝑅 ↑𝑟 𝑀 ) ) |
159 |
144 98
|
eqeltrdi |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑅 ∈ 𝑉 ) → 𝑁 ∈ ℕ0 ) |
160 |
159 132 100
|
syl2anc |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑅 ∈ 𝑉 ) → ◡ ( 𝑅 ↑𝑟 𝑁 ) = ( ◡ 𝑅 ↑𝑟 𝑁 ) ) |
161 |
158 160
|
coeq12d |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑅 ∈ 𝑉 ) → ( ◡ ( 𝑅 ↑𝑟 𝑀 ) ∘ ◡ ( 𝑅 ↑𝑟 𝑁 ) ) = ( ( ◡ 𝑅 ↑𝑟 𝑀 ) ∘ ( ◡ 𝑅 ↑𝑟 𝑁 ) ) ) |
162 |
84 161
|
eqtrid |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑅 ∈ 𝑉 ) → ◡ ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) = ( ( ◡ 𝑅 ↑𝑟 𝑀 ) ∘ ( ◡ 𝑅 ↑𝑟 𝑁 ) ) ) |
163 |
159 157
|
nn0addcld |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑅 ∈ 𝑉 ) → ( 𝑁 + 𝑀 ) ∈ ℕ0 ) |
164 |
163 132 109
|
syl2anc |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑅 ∈ 𝑉 ) → ◡ ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) = ( ◡ 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) |
165 |
155 162 164
|
3eqtr4d |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑅 ∈ 𝑉 ) → ◡ ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) = ◡ ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) |
166 |
159
|
nn0cnd |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑅 ∈ 𝑉 ) → 𝑁 ∈ ℂ ) |
167 |
151 166
|
addcomd |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑅 ∈ 𝑉 ) → ( 𝑀 + 𝑁 ) = ( 𝑁 + 𝑀 ) ) |
168 |
|
uzaddcl |
⊢ ( ( 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝑀 + 𝑁 ) ∈ ( ℤ≥ ‘ 2 ) ) |
169 |
131 159 168
|
syl2anc |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑅 ∈ 𝑉 ) → ( 𝑀 + 𝑁 ) ∈ ( ℤ≥ ‘ 2 ) ) |
170 |
167 169
|
eqeltrrd |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑅 ∈ 𝑉 ) → ( 𝑁 + 𝑀 ) ∈ ( ℤ≥ ‘ 2 ) ) |
171 |
|
relexpuzrel |
⊢ ( ( ( 𝑁 + 𝑀 ) ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑅 ∈ 𝑉 ) → Rel ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) |
172 |
170 132 171
|
syl2anc |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑅 ∈ 𝑉 ) → Rel ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) |
173 |
117 172 125
|
sylancr |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑅 ∈ 𝑉 ) → ( ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) = ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ↔ ◡ ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) = ◡ ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) ) |
174 |
165 173
|
mpbird |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑅 ∈ 𝑉 ) → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) = ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) |
175 |
174
|
a1d |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑅 ∈ 𝑉 ) → ( ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) = ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) ) |
176 |
175
|
3exp |
⊢ ( 𝑁 = 0 → ( 𝑀 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑅 ∈ 𝑉 → ( ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) = ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) ) ) ) |
177 |
176
|
com12 |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑁 = 0 → ( 𝑅 ∈ 𝑉 → ( ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) = ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) ) ) ) |
178 |
129 177
|
jaoi |
⊢ ( ( 𝑀 = 1 ∨ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ) → ( 𝑁 = 0 → ( 𝑅 ∈ 𝑉 → ( ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) = ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) ) ) ) |
179 |
76 178
|
sylbi |
⊢ ( 𝑀 ∈ ℕ → ( 𝑁 = 0 → ( 𝑅 ∈ 𝑉 → ( ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) = ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) ) ) ) |
180 |
|
coires1 |
⊢ ( ( 𝑅 ↑𝑟 0 ) ∘ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) = ( ( 𝑅 ↑𝑟 0 ) ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) |
181 |
|
simp3 |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → 𝑅 ∈ 𝑉 ) |
182 |
|
relexp0rel |
⊢ ( 𝑅 ∈ 𝑉 → Rel ( 𝑅 ↑𝑟 0 ) ) |
183 |
181 182
|
syl |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → Rel ( 𝑅 ↑𝑟 0 ) ) |
184 |
181 33
|
syl |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → ( 𝑅 ↑𝑟 0 ) = ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) |
185 |
184
|
dmeqd |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → dom ( 𝑅 ↑𝑟 0 ) = dom ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) |
186 |
|
dmresi |
⊢ dom ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) = ( dom 𝑅 ∪ ran 𝑅 ) |
187 |
185 186
|
eqtrdi |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → dom ( 𝑅 ↑𝑟 0 ) = ( dom 𝑅 ∪ ran 𝑅 ) ) |
188 |
|
eqimss |
⊢ ( dom ( 𝑅 ↑𝑟 0 ) = ( dom 𝑅 ∪ ran 𝑅 ) → dom ( 𝑅 ↑𝑟 0 ) ⊆ ( dom 𝑅 ∪ ran 𝑅 ) ) |
189 |
187 188
|
syl |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → dom ( 𝑅 ↑𝑟 0 ) ⊆ ( dom 𝑅 ∪ ran 𝑅 ) ) |
190 |
|
relssres |
⊢ ( ( Rel ( 𝑅 ↑𝑟 0 ) ∧ dom ( 𝑅 ↑𝑟 0 ) ⊆ ( dom 𝑅 ∪ ran 𝑅 ) ) → ( ( 𝑅 ↑𝑟 0 ) ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) = ( 𝑅 ↑𝑟 0 ) ) |
191 |
183 189 190
|
syl2anc |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → ( ( 𝑅 ↑𝑟 0 ) ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) = ( 𝑅 ↑𝑟 0 ) ) |
192 |
180 191
|
eqtrid |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → ( ( 𝑅 ↑𝑟 0 ) ∘ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) = ( 𝑅 ↑𝑟 0 ) ) |
193 |
|
simp1 |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → 𝑁 = 0 ) |
194 |
193
|
oveq2d |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → ( 𝑅 ↑𝑟 𝑁 ) = ( 𝑅 ↑𝑟 0 ) ) |
195 |
|
simp2 |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → 𝑀 = 0 ) |
196 |
195
|
oveq2d |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → ( 𝑅 ↑𝑟 𝑀 ) = ( 𝑅 ↑𝑟 0 ) ) |
197 |
196 184
|
eqtrd |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → ( 𝑅 ↑𝑟 𝑀 ) = ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) |
198 |
194 197
|
coeq12d |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) = ( ( 𝑅 ↑𝑟 0 ) ∘ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) ) |
199 |
193 195
|
oveq12d |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → ( 𝑁 + 𝑀 ) = ( 0 + 0 ) ) |
200 |
|
00id |
⊢ ( 0 + 0 ) = 0 |
201 |
199 200
|
eqtrdi |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → ( 𝑁 + 𝑀 ) = 0 ) |
202 |
201
|
oveq2d |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) = ( 𝑅 ↑𝑟 0 ) ) |
203 |
192 198 202
|
3eqtr4d |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) = ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) |
204 |
203
|
a1d |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → ( ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) = ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) ) |
205 |
204
|
3exp |
⊢ ( 𝑁 = 0 → ( 𝑀 = 0 → ( 𝑅 ∈ 𝑉 → ( ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) = ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) ) ) ) |
206 |
205
|
com12 |
⊢ ( 𝑀 = 0 → ( 𝑁 = 0 → ( 𝑅 ∈ 𝑉 → ( ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) = ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) ) ) ) |
207 |
179 206
|
jaoi |
⊢ ( ( 𝑀 ∈ ℕ ∨ 𝑀 = 0 ) → ( 𝑁 = 0 → ( 𝑅 ∈ 𝑉 → ( ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) = ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) ) ) ) |
208 |
2 207
|
sylbi |
⊢ ( 𝑀 ∈ ℕ0 → ( 𝑁 = 0 → ( 𝑅 ∈ 𝑉 → ( ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) = ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) ) ) ) |
209 |
208
|
com12 |
⊢ ( 𝑁 = 0 → ( 𝑀 ∈ ℕ0 → ( 𝑅 ∈ 𝑉 → ( ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) = ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) ) ) ) |
210 |
209
|
3impd |
⊢ ( 𝑁 = 0 → ( ( 𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) = ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) ) |
211 |
75 210
|
jaoi |
⊢ ( ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) → ( ( 𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) = ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) ) |
212 |
1 211
|
sylbi |
⊢ ( 𝑁 ∈ ℕ0 → ( ( 𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) = ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) ) |
213 |
212
|
imp |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) = ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) |