| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elnn0 |
⊢ ( 𝑁 ∈ ℕ0 ↔ ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ) |
| 2 |
|
elnn0 |
⊢ ( 𝑀 ∈ ℕ0 ↔ ( 𝑀 ∈ ℕ ∨ 𝑀 = 0 ) ) |
| 3 |
|
relexpaddnn |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ) → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) = ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) |
| 4 |
3
|
a1d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ) → ( ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) = ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) ) |
| 5 |
4
|
3exp |
⊢ ( 𝑁 ∈ ℕ → ( 𝑀 ∈ ℕ → ( 𝑅 ∈ 𝑉 → ( ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) = ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) ) ) ) |
| 6 |
5
|
com12 |
⊢ ( 𝑀 ∈ ℕ → ( 𝑁 ∈ ℕ → ( 𝑅 ∈ 𝑉 → ( ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) = ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) ) ) ) |
| 7 |
|
elnn1uz2 |
⊢ ( 𝑁 ∈ ℕ ↔ ( 𝑁 = 1 ∨ 𝑁 ∈ ( ℤ≥ ‘ 2 ) ) ) |
| 8 |
|
coires1 |
⊢ ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) = ( ( 𝑅 ↑𝑟 𝑁 ) ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) |
| 9 |
|
simpll |
⊢ ( ( ( 𝑁 = 1 ∧ 𝑀 = 0 ) ∧ ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → 𝑁 = 1 ) |
| 10 |
|
simplr |
⊢ ( ( ( 𝑁 = 1 ∧ 𝑀 = 0 ) ∧ ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → 𝑀 = 0 ) |
| 11 |
9 10
|
oveq12d |
⊢ ( ( ( 𝑁 = 1 ∧ 𝑀 = 0 ) ∧ ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → ( 𝑁 + 𝑀 ) = ( 1 + 0 ) ) |
| 12 |
|
1p0e1 |
⊢ ( 1 + 0 ) = 1 |
| 13 |
11 12
|
eqtrdi |
⊢ ( ( ( 𝑁 = 1 ∧ 𝑀 = 0 ) ∧ ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → ( 𝑁 + 𝑀 ) = 1 ) |
| 14 |
|
simprr |
⊢ ( ( ( 𝑁 = 1 ∧ 𝑀 = 0 ) ∧ ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) |
| 15 |
13 14
|
mpd |
⊢ ( ( ( 𝑁 = 1 ∧ 𝑀 = 0 ) ∧ ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → Rel 𝑅 ) |
| 16 |
9
|
oveq2d |
⊢ ( ( ( 𝑁 = 1 ∧ 𝑀 = 0 ) ∧ ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → ( 𝑅 ↑𝑟 𝑁 ) = ( 𝑅 ↑𝑟 1 ) ) |
| 17 |
|
simprl |
⊢ ( ( ( 𝑁 = 1 ∧ 𝑀 = 0 ) ∧ ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → 𝑅 ∈ 𝑉 ) |
| 18 |
|
relexp1g |
⊢ ( 𝑅 ∈ 𝑉 → ( 𝑅 ↑𝑟 1 ) = 𝑅 ) |
| 19 |
17 18
|
syl |
⊢ ( ( ( 𝑁 = 1 ∧ 𝑀 = 0 ) ∧ ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → ( 𝑅 ↑𝑟 1 ) = 𝑅 ) |
| 20 |
16 19
|
eqtrd |
⊢ ( ( ( 𝑁 = 1 ∧ 𝑀 = 0 ) ∧ ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → ( 𝑅 ↑𝑟 𝑁 ) = 𝑅 ) |
| 21 |
20
|
releqd |
⊢ ( ( ( 𝑁 = 1 ∧ 𝑀 = 0 ) ∧ ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → ( Rel ( 𝑅 ↑𝑟 𝑁 ) ↔ Rel 𝑅 ) ) |
| 22 |
15 21
|
mpbird |
⊢ ( ( ( 𝑁 = 1 ∧ 𝑀 = 0 ) ∧ ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → Rel ( 𝑅 ↑𝑟 𝑁 ) ) |
| 23 |
|
1nn |
⊢ 1 ∈ ℕ |
| 24 |
9 23
|
eqeltrdi |
⊢ ( ( ( 𝑁 = 1 ∧ 𝑀 = 0 ) ∧ ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → 𝑁 ∈ ℕ ) |
| 25 |
|
relexpnndm |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ) → dom ( 𝑅 ↑𝑟 𝑁 ) ⊆ dom 𝑅 ) |
| 26 |
24 17 25
|
syl2anc |
⊢ ( ( ( 𝑁 = 1 ∧ 𝑀 = 0 ) ∧ ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → dom ( 𝑅 ↑𝑟 𝑁 ) ⊆ dom 𝑅 ) |
| 27 |
|
ssun1 |
⊢ dom 𝑅 ⊆ ( dom 𝑅 ∪ ran 𝑅 ) |
| 28 |
26 27
|
sstrdi |
⊢ ( ( ( 𝑁 = 1 ∧ 𝑀 = 0 ) ∧ ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → dom ( 𝑅 ↑𝑟 𝑁 ) ⊆ ( dom 𝑅 ∪ ran 𝑅 ) ) |
| 29 |
|
relssres |
⊢ ( ( Rel ( 𝑅 ↑𝑟 𝑁 ) ∧ dom ( 𝑅 ↑𝑟 𝑁 ) ⊆ ( dom 𝑅 ∪ ran 𝑅 ) ) → ( ( 𝑅 ↑𝑟 𝑁 ) ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) = ( 𝑅 ↑𝑟 𝑁 ) ) |
| 30 |
22 28 29
|
syl2anc |
⊢ ( ( ( 𝑁 = 1 ∧ 𝑀 = 0 ) ∧ ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → ( ( 𝑅 ↑𝑟 𝑁 ) ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) = ( 𝑅 ↑𝑟 𝑁 ) ) |
| 31 |
8 30
|
eqtrid |
⊢ ( ( ( 𝑁 = 1 ∧ 𝑀 = 0 ) ∧ ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) = ( 𝑅 ↑𝑟 𝑁 ) ) |
| 32 |
10
|
oveq2d |
⊢ ( ( ( 𝑁 = 1 ∧ 𝑀 = 0 ) ∧ ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → ( 𝑅 ↑𝑟 𝑀 ) = ( 𝑅 ↑𝑟 0 ) ) |
| 33 |
|
relexp0g |
⊢ ( 𝑅 ∈ 𝑉 → ( 𝑅 ↑𝑟 0 ) = ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) |
| 34 |
17 33
|
syl |
⊢ ( ( ( 𝑁 = 1 ∧ 𝑀 = 0 ) ∧ ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → ( 𝑅 ↑𝑟 0 ) = ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) |
| 35 |
32 34
|
eqtrd |
⊢ ( ( ( 𝑁 = 1 ∧ 𝑀 = 0 ) ∧ ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → ( 𝑅 ↑𝑟 𝑀 ) = ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) |
| 36 |
35
|
coeq2d |
⊢ ( ( ( 𝑁 = 1 ∧ 𝑀 = 0 ) ∧ ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) = ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) ) |
| 37 |
10
|
oveq2d |
⊢ ( ( ( 𝑁 = 1 ∧ 𝑀 = 0 ) ∧ ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → ( 𝑁 + 𝑀 ) = ( 𝑁 + 0 ) ) |
| 38 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 39 |
9 38
|
eqeltrdi |
⊢ ( ( ( 𝑁 = 1 ∧ 𝑀 = 0 ) ∧ ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → 𝑁 ∈ ℂ ) |
| 40 |
39
|
addridd |
⊢ ( ( ( 𝑁 = 1 ∧ 𝑀 = 0 ) ∧ ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → ( 𝑁 + 0 ) = 𝑁 ) |
| 41 |
37 40
|
eqtrd |
⊢ ( ( ( 𝑁 = 1 ∧ 𝑀 = 0 ) ∧ ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → ( 𝑁 + 𝑀 ) = 𝑁 ) |
| 42 |
41
|
oveq2d |
⊢ ( ( ( 𝑁 = 1 ∧ 𝑀 = 0 ) ∧ ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) = ( 𝑅 ↑𝑟 𝑁 ) ) |
| 43 |
31 36 42
|
3eqtr4d |
⊢ ( ( ( 𝑁 = 1 ∧ 𝑀 = 0 ) ∧ ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) = ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) |
| 44 |
43
|
exp43 |
⊢ ( 𝑁 = 1 → ( 𝑀 = 0 → ( 𝑅 ∈ 𝑉 → ( ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) = ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) ) ) ) |
| 45 |
|
simp1 |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → 𝑁 ∈ ( ℤ≥ ‘ 2 ) ) |
| 46 |
|
simp3 |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → 𝑅 ∈ 𝑉 ) |
| 47 |
|
relexpuzrel |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑅 ∈ 𝑉 ) → Rel ( 𝑅 ↑𝑟 𝑁 ) ) |
| 48 |
45 46 47
|
syl2anc |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → Rel ( 𝑅 ↑𝑟 𝑁 ) ) |
| 49 |
|
eluz2nn |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → 𝑁 ∈ ℕ ) |
| 50 |
45 49
|
syl |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → 𝑁 ∈ ℕ ) |
| 51 |
50 46 25
|
syl2anc |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → dom ( 𝑅 ↑𝑟 𝑁 ) ⊆ dom 𝑅 ) |
| 52 |
51 27
|
sstrdi |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → dom ( 𝑅 ↑𝑟 𝑁 ) ⊆ ( dom 𝑅 ∪ ran 𝑅 ) ) |
| 53 |
48 52 29
|
syl2anc |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → ( ( 𝑅 ↑𝑟 𝑁 ) ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) = ( 𝑅 ↑𝑟 𝑁 ) ) |
| 54 |
8 53
|
eqtrid |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) = ( 𝑅 ↑𝑟 𝑁 ) ) |
| 55 |
|
simp2 |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → 𝑀 = 0 ) |
| 56 |
55
|
oveq2d |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → ( 𝑅 ↑𝑟 𝑀 ) = ( 𝑅 ↑𝑟 0 ) ) |
| 57 |
46 33
|
syl |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → ( 𝑅 ↑𝑟 0 ) = ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) |
| 58 |
56 57
|
eqtrd |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → ( 𝑅 ↑𝑟 𝑀 ) = ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) |
| 59 |
58
|
coeq2d |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) = ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) ) |
| 60 |
55
|
oveq2d |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → ( 𝑁 + 𝑀 ) = ( 𝑁 + 0 ) ) |
| 61 |
|
eluzelcn |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → 𝑁 ∈ ℂ ) |
| 62 |
45 61
|
syl |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → 𝑁 ∈ ℂ ) |
| 63 |
62
|
addridd |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → ( 𝑁 + 0 ) = 𝑁 ) |
| 64 |
60 63
|
eqtrd |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → ( 𝑁 + 𝑀 ) = 𝑁 ) |
| 65 |
64
|
oveq2d |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) = ( 𝑅 ↑𝑟 𝑁 ) ) |
| 66 |
54 59 65
|
3eqtr4d |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) = ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) |
| 67 |
66
|
a1d |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → ( ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) = ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) ) |
| 68 |
67
|
3exp |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑀 = 0 → ( 𝑅 ∈ 𝑉 → ( ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) = ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) ) ) ) |
| 69 |
44 68
|
jaoi |
⊢ ( ( 𝑁 = 1 ∨ 𝑁 ∈ ( ℤ≥ ‘ 2 ) ) → ( 𝑀 = 0 → ( 𝑅 ∈ 𝑉 → ( ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) = ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) ) ) ) |
| 70 |
7 69
|
sylbi |
⊢ ( 𝑁 ∈ ℕ → ( 𝑀 = 0 → ( 𝑅 ∈ 𝑉 → ( ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) = ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) ) ) ) |
| 71 |
70
|
com12 |
⊢ ( 𝑀 = 0 → ( 𝑁 ∈ ℕ → ( 𝑅 ∈ 𝑉 → ( ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) = ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) ) ) ) |
| 72 |
6 71
|
jaoi |
⊢ ( ( 𝑀 ∈ ℕ ∨ 𝑀 = 0 ) → ( 𝑁 ∈ ℕ → ( 𝑅 ∈ 𝑉 → ( ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) = ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) ) ) ) |
| 73 |
2 72
|
sylbi |
⊢ ( 𝑀 ∈ ℕ0 → ( 𝑁 ∈ ℕ → ( 𝑅 ∈ 𝑉 → ( ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) = ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) ) ) ) |
| 74 |
73
|
com12 |
⊢ ( 𝑁 ∈ ℕ → ( 𝑀 ∈ ℕ0 → ( 𝑅 ∈ 𝑉 → ( ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) = ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) ) ) ) |
| 75 |
74
|
3impd |
⊢ ( 𝑁 ∈ ℕ → ( ( 𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) = ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) ) |
| 76 |
|
elnn1uz2 |
⊢ ( 𝑀 ∈ ℕ ↔ ( 𝑀 = 1 ∨ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ) ) |
| 77 |
|
coires1 |
⊢ ( ◡ 𝑅 ∘ ( I ↾ ( dom ◡ 𝑅 ∪ ran ◡ 𝑅 ) ) ) = ( ◡ 𝑅 ↾ ( dom ◡ 𝑅 ∪ ran ◡ 𝑅 ) ) |
| 78 |
|
relcnv |
⊢ Rel ◡ 𝑅 |
| 79 |
|
ssun1 |
⊢ dom ◡ 𝑅 ⊆ ( dom ◡ 𝑅 ∪ ran ◡ 𝑅 ) |
| 80 |
78 79
|
pm3.2i |
⊢ ( Rel ◡ 𝑅 ∧ dom ◡ 𝑅 ⊆ ( dom ◡ 𝑅 ∪ ran ◡ 𝑅 ) ) |
| 81 |
|
relssres |
⊢ ( ( Rel ◡ 𝑅 ∧ dom ◡ 𝑅 ⊆ ( dom ◡ 𝑅 ∪ ran ◡ 𝑅 ) ) → ( ◡ 𝑅 ↾ ( dom ◡ 𝑅 ∪ ran ◡ 𝑅 ) ) = ◡ 𝑅 ) |
| 82 |
80 81
|
mp1i |
⊢ ( ( ( 𝑁 = 0 ∧ 𝑀 = 1 ) ∧ ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → ( ◡ 𝑅 ↾ ( dom ◡ 𝑅 ∪ ran ◡ 𝑅 ) ) = ◡ 𝑅 ) |
| 83 |
77 82
|
eqtrid |
⊢ ( ( ( 𝑁 = 0 ∧ 𝑀 = 1 ) ∧ ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → ( ◡ 𝑅 ∘ ( I ↾ ( dom ◡ 𝑅 ∪ ran ◡ 𝑅 ) ) ) = ◡ 𝑅 ) |
| 84 |
|
cnvco |
⊢ ◡ ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) = ( ◡ ( 𝑅 ↑𝑟 𝑀 ) ∘ ◡ ( 𝑅 ↑𝑟 𝑁 ) ) |
| 85 |
|
simplr |
⊢ ( ( ( 𝑁 = 0 ∧ 𝑀 = 1 ) ∧ ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → 𝑀 = 1 ) |
| 86 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
| 87 |
85 86
|
eqeltrdi |
⊢ ( ( ( 𝑁 = 0 ∧ 𝑀 = 1 ) ∧ ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → 𝑀 ∈ ℕ0 ) |
| 88 |
|
simprl |
⊢ ( ( ( 𝑁 = 0 ∧ 𝑀 = 1 ) ∧ ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → 𝑅 ∈ 𝑉 ) |
| 89 |
|
relexpcnv |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ) → ◡ ( 𝑅 ↑𝑟 𝑀 ) = ( ◡ 𝑅 ↑𝑟 𝑀 ) ) |
| 90 |
87 88 89
|
syl2anc |
⊢ ( ( ( 𝑁 = 0 ∧ 𝑀 = 1 ) ∧ ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → ◡ ( 𝑅 ↑𝑟 𝑀 ) = ( ◡ 𝑅 ↑𝑟 𝑀 ) ) |
| 91 |
85
|
oveq2d |
⊢ ( ( ( 𝑁 = 0 ∧ 𝑀 = 1 ) ∧ ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → ( ◡ 𝑅 ↑𝑟 𝑀 ) = ( ◡ 𝑅 ↑𝑟 1 ) ) |
| 92 |
|
cnvexg |
⊢ ( 𝑅 ∈ 𝑉 → ◡ 𝑅 ∈ V ) |
| 93 |
88 92
|
syl |
⊢ ( ( ( 𝑁 = 0 ∧ 𝑀 = 1 ) ∧ ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → ◡ 𝑅 ∈ V ) |
| 94 |
|
relexp1g |
⊢ ( ◡ 𝑅 ∈ V → ( ◡ 𝑅 ↑𝑟 1 ) = ◡ 𝑅 ) |
| 95 |
93 94
|
syl |
⊢ ( ( ( 𝑁 = 0 ∧ 𝑀 = 1 ) ∧ ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → ( ◡ 𝑅 ↑𝑟 1 ) = ◡ 𝑅 ) |
| 96 |
90 91 95
|
3eqtrd |
⊢ ( ( ( 𝑁 = 0 ∧ 𝑀 = 1 ) ∧ ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → ◡ ( 𝑅 ↑𝑟 𝑀 ) = ◡ 𝑅 ) |
| 97 |
|
simpll |
⊢ ( ( ( 𝑁 = 0 ∧ 𝑀 = 1 ) ∧ ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → 𝑁 = 0 ) |
| 98 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
| 99 |
97 98
|
eqeltrdi |
⊢ ( ( ( 𝑁 = 0 ∧ 𝑀 = 1 ) ∧ ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → 𝑁 ∈ ℕ0 ) |
| 100 |
|
relexpcnv |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ) → ◡ ( 𝑅 ↑𝑟 𝑁 ) = ( ◡ 𝑅 ↑𝑟 𝑁 ) ) |
| 101 |
99 88 100
|
syl2anc |
⊢ ( ( ( 𝑁 = 0 ∧ 𝑀 = 1 ) ∧ ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → ◡ ( 𝑅 ↑𝑟 𝑁 ) = ( ◡ 𝑅 ↑𝑟 𝑁 ) ) |
| 102 |
97
|
oveq2d |
⊢ ( ( ( 𝑁 = 0 ∧ 𝑀 = 1 ) ∧ ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → ( ◡ 𝑅 ↑𝑟 𝑁 ) = ( ◡ 𝑅 ↑𝑟 0 ) ) |
| 103 |
|
relexp0g |
⊢ ( ◡ 𝑅 ∈ V → ( ◡ 𝑅 ↑𝑟 0 ) = ( I ↾ ( dom ◡ 𝑅 ∪ ran ◡ 𝑅 ) ) ) |
| 104 |
93 103
|
syl |
⊢ ( ( ( 𝑁 = 0 ∧ 𝑀 = 1 ) ∧ ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → ( ◡ 𝑅 ↑𝑟 0 ) = ( I ↾ ( dom ◡ 𝑅 ∪ ran ◡ 𝑅 ) ) ) |
| 105 |
101 102 104
|
3eqtrd |
⊢ ( ( ( 𝑁 = 0 ∧ 𝑀 = 1 ) ∧ ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → ◡ ( 𝑅 ↑𝑟 𝑁 ) = ( I ↾ ( dom ◡ 𝑅 ∪ ran ◡ 𝑅 ) ) ) |
| 106 |
96 105
|
coeq12d |
⊢ ( ( ( 𝑁 = 0 ∧ 𝑀 = 1 ) ∧ ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → ( ◡ ( 𝑅 ↑𝑟 𝑀 ) ∘ ◡ ( 𝑅 ↑𝑟 𝑁 ) ) = ( ◡ 𝑅 ∘ ( I ↾ ( dom ◡ 𝑅 ∪ ran ◡ 𝑅 ) ) ) ) |
| 107 |
84 106
|
eqtrid |
⊢ ( ( ( 𝑁 = 0 ∧ 𝑀 = 1 ) ∧ ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → ◡ ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) = ( ◡ 𝑅 ∘ ( I ↾ ( dom ◡ 𝑅 ∪ ran ◡ 𝑅 ) ) ) ) |
| 108 |
99 87
|
nn0addcld |
⊢ ( ( ( 𝑁 = 0 ∧ 𝑀 = 1 ) ∧ ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → ( 𝑁 + 𝑀 ) ∈ ℕ0 ) |
| 109 |
|
relexpcnv |
⊢ ( ( ( 𝑁 + 𝑀 ) ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ) → ◡ ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) = ( ◡ 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) |
| 110 |
108 88 109
|
syl2anc |
⊢ ( ( ( 𝑁 = 0 ∧ 𝑀 = 1 ) ∧ ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → ◡ ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) = ( ◡ 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) |
| 111 |
97 85
|
oveq12d |
⊢ ( ( ( 𝑁 = 0 ∧ 𝑀 = 1 ) ∧ ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → ( 𝑁 + 𝑀 ) = ( 0 + 1 ) ) |
| 112 |
|
0p1e1 |
⊢ ( 0 + 1 ) = 1 |
| 113 |
111 112
|
eqtrdi |
⊢ ( ( ( 𝑁 = 0 ∧ 𝑀 = 1 ) ∧ ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → ( 𝑁 + 𝑀 ) = 1 ) |
| 114 |
113
|
oveq2d |
⊢ ( ( ( 𝑁 = 0 ∧ 𝑀 = 1 ) ∧ ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → ( ◡ 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) = ( ◡ 𝑅 ↑𝑟 1 ) ) |
| 115 |
110 114 95
|
3eqtrd |
⊢ ( ( ( 𝑁 = 0 ∧ 𝑀 = 1 ) ∧ ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → ◡ ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) = ◡ 𝑅 ) |
| 116 |
83 107 115
|
3eqtr4d |
⊢ ( ( ( 𝑁 = 0 ∧ 𝑀 = 1 ) ∧ ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → ◡ ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) = ◡ ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) |
| 117 |
|
relco |
⊢ Rel ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) |
| 118 |
|
simprr |
⊢ ( ( ( 𝑁 = 0 ∧ 𝑀 = 1 ) ∧ ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) |
| 119 |
113 118
|
mpd |
⊢ ( ( ( 𝑁 = 0 ∧ 𝑀 = 1 ) ∧ ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → Rel 𝑅 ) |
| 120 |
113
|
oveq2d |
⊢ ( ( ( 𝑁 = 0 ∧ 𝑀 = 1 ) ∧ ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) = ( 𝑅 ↑𝑟 1 ) ) |
| 121 |
88 18
|
syl |
⊢ ( ( ( 𝑁 = 0 ∧ 𝑀 = 1 ) ∧ ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → ( 𝑅 ↑𝑟 1 ) = 𝑅 ) |
| 122 |
120 121
|
eqtrd |
⊢ ( ( ( 𝑁 = 0 ∧ 𝑀 = 1 ) ∧ ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) = 𝑅 ) |
| 123 |
122
|
releqd |
⊢ ( ( ( 𝑁 = 0 ∧ 𝑀 = 1 ) ∧ ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → ( Rel ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ↔ Rel 𝑅 ) ) |
| 124 |
119 123
|
mpbird |
⊢ ( ( ( 𝑁 = 0 ∧ 𝑀 = 1 ) ∧ ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → Rel ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) |
| 125 |
|
cnveqb |
⊢ ( ( Rel ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) ∧ Rel ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) → ( ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) = ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ↔ ◡ ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) = ◡ ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) ) |
| 126 |
117 124 125
|
sylancr |
⊢ ( ( ( 𝑁 = 0 ∧ 𝑀 = 1 ) ∧ ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → ( ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) = ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ↔ ◡ ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) = ◡ ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) ) |
| 127 |
116 126
|
mpbird |
⊢ ( ( ( 𝑁 = 0 ∧ 𝑀 = 1 ) ∧ ( 𝑅 ∈ 𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) = ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) |
| 128 |
127
|
exp43 |
⊢ ( 𝑁 = 0 → ( 𝑀 = 1 → ( 𝑅 ∈ 𝑉 → ( ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) = ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) ) ) ) |
| 129 |
128
|
com12 |
⊢ ( 𝑀 = 1 → ( 𝑁 = 0 → ( 𝑅 ∈ 𝑉 → ( ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) = ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) ) ) ) |
| 130 |
|
coires1 |
⊢ ( ( ◡ 𝑅 ↑𝑟 𝑀 ) ∘ ( I ↾ ( dom ◡ 𝑅 ∪ ran ◡ 𝑅 ) ) ) = ( ( ◡ 𝑅 ↑𝑟 𝑀 ) ↾ ( dom ◡ 𝑅 ∪ ran ◡ 𝑅 ) ) |
| 131 |
|
simp2 |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑅 ∈ 𝑉 ) → 𝑀 ∈ ( ℤ≥ ‘ 2 ) ) |
| 132 |
|
simp3 |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑅 ∈ 𝑉 ) → 𝑅 ∈ 𝑉 ) |
| 133 |
132 92
|
syl |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑅 ∈ 𝑉 ) → ◡ 𝑅 ∈ V ) |
| 134 |
|
relexpuzrel |
⊢ ( ( 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ ◡ 𝑅 ∈ V ) → Rel ( ◡ 𝑅 ↑𝑟 𝑀 ) ) |
| 135 |
131 133 134
|
syl2anc |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑅 ∈ 𝑉 ) → Rel ( ◡ 𝑅 ↑𝑟 𝑀 ) ) |
| 136 |
|
eluz2nn |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 2 ) → 𝑀 ∈ ℕ ) |
| 137 |
131 136
|
syl |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑅 ∈ 𝑉 ) → 𝑀 ∈ ℕ ) |
| 138 |
|
relexpnndm |
⊢ ( ( 𝑀 ∈ ℕ ∧ ◡ 𝑅 ∈ V ) → dom ( ◡ 𝑅 ↑𝑟 𝑀 ) ⊆ dom ◡ 𝑅 ) |
| 139 |
137 133 138
|
syl2anc |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑅 ∈ 𝑉 ) → dom ( ◡ 𝑅 ↑𝑟 𝑀 ) ⊆ dom ◡ 𝑅 ) |
| 140 |
139 79
|
sstrdi |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑅 ∈ 𝑉 ) → dom ( ◡ 𝑅 ↑𝑟 𝑀 ) ⊆ ( dom ◡ 𝑅 ∪ ran ◡ 𝑅 ) ) |
| 141 |
|
relssres |
⊢ ( ( Rel ( ◡ 𝑅 ↑𝑟 𝑀 ) ∧ dom ( ◡ 𝑅 ↑𝑟 𝑀 ) ⊆ ( dom ◡ 𝑅 ∪ ran ◡ 𝑅 ) ) → ( ( ◡ 𝑅 ↑𝑟 𝑀 ) ↾ ( dom ◡ 𝑅 ∪ ran ◡ 𝑅 ) ) = ( ◡ 𝑅 ↑𝑟 𝑀 ) ) |
| 142 |
135 140 141
|
syl2anc |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑅 ∈ 𝑉 ) → ( ( ◡ 𝑅 ↑𝑟 𝑀 ) ↾ ( dom ◡ 𝑅 ∪ ran ◡ 𝑅 ) ) = ( ◡ 𝑅 ↑𝑟 𝑀 ) ) |
| 143 |
130 142
|
eqtrid |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑅 ∈ 𝑉 ) → ( ( ◡ 𝑅 ↑𝑟 𝑀 ) ∘ ( I ↾ ( dom ◡ 𝑅 ∪ ran ◡ 𝑅 ) ) ) = ( ◡ 𝑅 ↑𝑟 𝑀 ) ) |
| 144 |
|
simp1 |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑅 ∈ 𝑉 ) → 𝑁 = 0 ) |
| 145 |
144
|
oveq2d |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑅 ∈ 𝑉 ) → ( ◡ 𝑅 ↑𝑟 𝑁 ) = ( ◡ 𝑅 ↑𝑟 0 ) ) |
| 146 |
133 103
|
syl |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑅 ∈ 𝑉 ) → ( ◡ 𝑅 ↑𝑟 0 ) = ( I ↾ ( dom ◡ 𝑅 ∪ ran ◡ 𝑅 ) ) ) |
| 147 |
145 146
|
eqtrd |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑅 ∈ 𝑉 ) → ( ◡ 𝑅 ↑𝑟 𝑁 ) = ( I ↾ ( dom ◡ 𝑅 ∪ ran ◡ 𝑅 ) ) ) |
| 148 |
147
|
coeq2d |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑅 ∈ 𝑉 ) → ( ( ◡ 𝑅 ↑𝑟 𝑀 ) ∘ ( ◡ 𝑅 ↑𝑟 𝑁 ) ) = ( ( ◡ 𝑅 ↑𝑟 𝑀 ) ∘ ( I ↾ ( dom ◡ 𝑅 ∪ ran ◡ 𝑅 ) ) ) ) |
| 149 |
144
|
oveq1d |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑅 ∈ 𝑉 ) → ( 𝑁 + 𝑀 ) = ( 0 + 𝑀 ) ) |
| 150 |
|
eluzelcn |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 2 ) → 𝑀 ∈ ℂ ) |
| 151 |
131 150
|
syl |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑅 ∈ 𝑉 ) → 𝑀 ∈ ℂ ) |
| 152 |
151
|
addlidd |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑅 ∈ 𝑉 ) → ( 0 + 𝑀 ) = 𝑀 ) |
| 153 |
149 152
|
eqtrd |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑅 ∈ 𝑉 ) → ( 𝑁 + 𝑀 ) = 𝑀 ) |
| 154 |
153
|
oveq2d |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑅 ∈ 𝑉 ) → ( ◡ 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) = ( ◡ 𝑅 ↑𝑟 𝑀 ) ) |
| 155 |
143 148 154
|
3eqtr4d |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑅 ∈ 𝑉 ) → ( ( ◡ 𝑅 ↑𝑟 𝑀 ) ∘ ( ◡ 𝑅 ↑𝑟 𝑁 ) ) = ( ◡ 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) |
| 156 |
|
nnnn0 |
⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ℕ0 ) |
| 157 |
131 136 156
|
3syl |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑅 ∈ 𝑉 ) → 𝑀 ∈ ℕ0 ) |
| 158 |
157 132 89
|
syl2anc |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑅 ∈ 𝑉 ) → ◡ ( 𝑅 ↑𝑟 𝑀 ) = ( ◡ 𝑅 ↑𝑟 𝑀 ) ) |
| 159 |
144 98
|
eqeltrdi |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑅 ∈ 𝑉 ) → 𝑁 ∈ ℕ0 ) |
| 160 |
159 132 100
|
syl2anc |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑅 ∈ 𝑉 ) → ◡ ( 𝑅 ↑𝑟 𝑁 ) = ( ◡ 𝑅 ↑𝑟 𝑁 ) ) |
| 161 |
158 160
|
coeq12d |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑅 ∈ 𝑉 ) → ( ◡ ( 𝑅 ↑𝑟 𝑀 ) ∘ ◡ ( 𝑅 ↑𝑟 𝑁 ) ) = ( ( ◡ 𝑅 ↑𝑟 𝑀 ) ∘ ( ◡ 𝑅 ↑𝑟 𝑁 ) ) ) |
| 162 |
84 161
|
eqtrid |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑅 ∈ 𝑉 ) → ◡ ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) = ( ( ◡ 𝑅 ↑𝑟 𝑀 ) ∘ ( ◡ 𝑅 ↑𝑟 𝑁 ) ) ) |
| 163 |
159 157
|
nn0addcld |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑅 ∈ 𝑉 ) → ( 𝑁 + 𝑀 ) ∈ ℕ0 ) |
| 164 |
163 132 109
|
syl2anc |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑅 ∈ 𝑉 ) → ◡ ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) = ( ◡ 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) |
| 165 |
155 162 164
|
3eqtr4d |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑅 ∈ 𝑉 ) → ◡ ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) = ◡ ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) |
| 166 |
159
|
nn0cnd |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑅 ∈ 𝑉 ) → 𝑁 ∈ ℂ ) |
| 167 |
151 166
|
addcomd |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑅 ∈ 𝑉 ) → ( 𝑀 + 𝑁 ) = ( 𝑁 + 𝑀 ) ) |
| 168 |
|
uzaddcl |
⊢ ( ( 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝑀 + 𝑁 ) ∈ ( ℤ≥ ‘ 2 ) ) |
| 169 |
131 159 168
|
syl2anc |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑅 ∈ 𝑉 ) → ( 𝑀 + 𝑁 ) ∈ ( ℤ≥ ‘ 2 ) ) |
| 170 |
167 169
|
eqeltrrd |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑅 ∈ 𝑉 ) → ( 𝑁 + 𝑀 ) ∈ ( ℤ≥ ‘ 2 ) ) |
| 171 |
|
relexpuzrel |
⊢ ( ( ( 𝑁 + 𝑀 ) ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑅 ∈ 𝑉 ) → Rel ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) |
| 172 |
170 132 171
|
syl2anc |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑅 ∈ 𝑉 ) → Rel ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) |
| 173 |
117 172 125
|
sylancr |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑅 ∈ 𝑉 ) → ( ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) = ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ↔ ◡ ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) = ◡ ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) ) |
| 174 |
165 173
|
mpbird |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑅 ∈ 𝑉 ) → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) = ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) |
| 175 |
174
|
a1d |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑅 ∈ 𝑉 ) → ( ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) = ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) ) |
| 176 |
175
|
3exp |
⊢ ( 𝑁 = 0 → ( 𝑀 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑅 ∈ 𝑉 → ( ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) = ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) ) ) ) |
| 177 |
176
|
com12 |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑁 = 0 → ( 𝑅 ∈ 𝑉 → ( ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) = ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) ) ) ) |
| 178 |
129 177
|
jaoi |
⊢ ( ( 𝑀 = 1 ∨ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ) → ( 𝑁 = 0 → ( 𝑅 ∈ 𝑉 → ( ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) = ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) ) ) ) |
| 179 |
76 178
|
sylbi |
⊢ ( 𝑀 ∈ ℕ → ( 𝑁 = 0 → ( 𝑅 ∈ 𝑉 → ( ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) = ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) ) ) ) |
| 180 |
|
coires1 |
⊢ ( ( 𝑅 ↑𝑟 0 ) ∘ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) = ( ( 𝑅 ↑𝑟 0 ) ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) |
| 181 |
|
simp3 |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → 𝑅 ∈ 𝑉 ) |
| 182 |
|
relexp0rel |
⊢ ( 𝑅 ∈ 𝑉 → Rel ( 𝑅 ↑𝑟 0 ) ) |
| 183 |
181 182
|
syl |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → Rel ( 𝑅 ↑𝑟 0 ) ) |
| 184 |
181 33
|
syl |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → ( 𝑅 ↑𝑟 0 ) = ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) |
| 185 |
184
|
dmeqd |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → dom ( 𝑅 ↑𝑟 0 ) = dom ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) |
| 186 |
|
dmresi |
⊢ dom ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) = ( dom 𝑅 ∪ ran 𝑅 ) |
| 187 |
185 186
|
eqtrdi |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → dom ( 𝑅 ↑𝑟 0 ) = ( dom 𝑅 ∪ ran 𝑅 ) ) |
| 188 |
|
eqimss |
⊢ ( dom ( 𝑅 ↑𝑟 0 ) = ( dom 𝑅 ∪ ran 𝑅 ) → dom ( 𝑅 ↑𝑟 0 ) ⊆ ( dom 𝑅 ∪ ran 𝑅 ) ) |
| 189 |
187 188
|
syl |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → dom ( 𝑅 ↑𝑟 0 ) ⊆ ( dom 𝑅 ∪ ran 𝑅 ) ) |
| 190 |
|
relssres |
⊢ ( ( Rel ( 𝑅 ↑𝑟 0 ) ∧ dom ( 𝑅 ↑𝑟 0 ) ⊆ ( dom 𝑅 ∪ ran 𝑅 ) ) → ( ( 𝑅 ↑𝑟 0 ) ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) = ( 𝑅 ↑𝑟 0 ) ) |
| 191 |
183 189 190
|
syl2anc |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → ( ( 𝑅 ↑𝑟 0 ) ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) = ( 𝑅 ↑𝑟 0 ) ) |
| 192 |
180 191
|
eqtrid |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → ( ( 𝑅 ↑𝑟 0 ) ∘ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) = ( 𝑅 ↑𝑟 0 ) ) |
| 193 |
|
simp1 |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → 𝑁 = 0 ) |
| 194 |
193
|
oveq2d |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → ( 𝑅 ↑𝑟 𝑁 ) = ( 𝑅 ↑𝑟 0 ) ) |
| 195 |
|
simp2 |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → 𝑀 = 0 ) |
| 196 |
195
|
oveq2d |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → ( 𝑅 ↑𝑟 𝑀 ) = ( 𝑅 ↑𝑟 0 ) ) |
| 197 |
196 184
|
eqtrd |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → ( 𝑅 ↑𝑟 𝑀 ) = ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) |
| 198 |
194 197
|
coeq12d |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) = ( ( 𝑅 ↑𝑟 0 ) ∘ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) ) |
| 199 |
193 195
|
oveq12d |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → ( 𝑁 + 𝑀 ) = ( 0 + 0 ) ) |
| 200 |
|
00id |
⊢ ( 0 + 0 ) = 0 |
| 201 |
199 200
|
eqtrdi |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → ( 𝑁 + 𝑀 ) = 0 ) |
| 202 |
201
|
oveq2d |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) = ( 𝑅 ↑𝑟 0 ) ) |
| 203 |
192 198 202
|
3eqtr4d |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) = ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) |
| 204 |
203
|
a1d |
⊢ ( ( 𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉 ) → ( ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) = ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) ) |
| 205 |
204
|
3exp |
⊢ ( 𝑁 = 0 → ( 𝑀 = 0 → ( 𝑅 ∈ 𝑉 → ( ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) = ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) ) ) ) |
| 206 |
205
|
com12 |
⊢ ( 𝑀 = 0 → ( 𝑁 = 0 → ( 𝑅 ∈ 𝑉 → ( ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) = ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) ) ) ) |
| 207 |
179 206
|
jaoi |
⊢ ( ( 𝑀 ∈ ℕ ∨ 𝑀 = 0 ) → ( 𝑁 = 0 → ( 𝑅 ∈ 𝑉 → ( ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) = ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) ) ) ) |
| 208 |
2 207
|
sylbi |
⊢ ( 𝑀 ∈ ℕ0 → ( 𝑁 = 0 → ( 𝑅 ∈ 𝑉 → ( ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) = ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) ) ) ) |
| 209 |
208
|
com12 |
⊢ ( 𝑁 = 0 → ( 𝑀 ∈ ℕ0 → ( 𝑅 ∈ 𝑉 → ( ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) = ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) ) ) ) |
| 210 |
209
|
3impd |
⊢ ( 𝑁 = 0 → ( ( 𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) = ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) ) |
| 211 |
75 210
|
jaoi |
⊢ ( ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) → ( ( 𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) = ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) ) |
| 212 |
1 211
|
sylbi |
⊢ ( 𝑁 ∈ ℕ0 → ( ( 𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) = ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) ) |
| 213 |
212
|
imp |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → ( ( 𝑅 ↑𝑟 𝑁 ) ∘ ( 𝑅 ↑𝑟 𝑀 ) ) = ( 𝑅 ↑𝑟 ( 𝑁 + 𝑀 ) ) ) |