Step |
Hyp |
Ref |
Expression |
1 |
|
dfrcl4 |
⊢ r* = ( 𝑎 ∈ V ↦ ∪ 𝑖 ∈ { 0 , 1 } ( 𝑎 ↑𝑟 𝑖 ) ) |
2 |
|
dftrcl3 |
⊢ t+ = ( 𝑏 ∈ V ↦ ∪ 𝑗 ∈ ℕ ( 𝑏 ↑𝑟 𝑗 ) ) |
3 |
|
dfrtrcl3 |
⊢ t* = ( 𝑐 ∈ V ↦ ∪ 𝑘 ∈ ℕ0 ( 𝑐 ↑𝑟 𝑘 ) ) |
4 |
|
prex |
⊢ { 0 , 1 } ∈ V |
5 |
|
nnex |
⊢ ℕ ∈ V |
6 |
|
df-n0 |
⊢ ℕ0 = ( ℕ ∪ { 0 } ) |
7 |
|
uncom |
⊢ ( ℕ ∪ { 0 } ) = ( { 0 } ∪ ℕ ) |
8 |
|
df-pr |
⊢ { 0 , 1 } = ( { 0 } ∪ { 1 } ) |
9 |
8
|
uneq1i |
⊢ ( { 0 , 1 } ∪ ℕ ) = ( ( { 0 } ∪ { 1 } ) ∪ ℕ ) |
10 |
|
unass |
⊢ ( ( { 0 } ∪ { 1 } ) ∪ ℕ ) = ( { 0 } ∪ ( { 1 } ∪ ℕ ) ) |
11 |
|
1nn |
⊢ 1 ∈ ℕ |
12 |
|
snssi |
⊢ ( 1 ∈ ℕ → { 1 } ⊆ ℕ ) |
13 |
11 12
|
ax-mp |
⊢ { 1 } ⊆ ℕ |
14 |
|
ssequn1 |
⊢ ( { 1 } ⊆ ℕ ↔ ( { 1 } ∪ ℕ ) = ℕ ) |
15 |
13 14
|
mpbi |
⊢ ( { 1 } ∪ ℕ ) = ℕ |
16 |
15
|
uneq2i |
⊢ ( { 0 } ∪ ( { 1 } ∪ ℕ ) ) = ( { 0 } ∪ ℕ ) |
17 |
9 10 16
|
3eqtrri |
⊢ ( { 0 } ∪ ℕ ) = ( { 0 , 1 } ∪ ℕ ) |
18 |
6 7 17
|
3eqtri |
⊢ ℕ0 = ( { 0 , 1 } ∪ ℕ ) |
19 |
|
oveq2 |
⊢ ( 𝑘 = 𝑖 → ( 𝑑 ↑𝑟 𝑘 ) = ( 𝑑 ↑𝑟 𝑖 ) ) |
20 |
19
|
cbviunv |
⊢ ∪ 𝑘 ∈ { 0 , 1 } ( 𝑑 ↑𝑟 𝑘 ) = ∪ 𝑖 ∈ { 0 , 1 } ( 𝑑 ↑𝑟 𝑖 ) |
21 |
|
ss2iun |
⊢ ( ∀ 𝑖 ∈ { 0 , 1 } ( 𝑑 ↑𝑟 𝑖 ) ⊆ ( ∪ 𝑗 ∈ ℕ ( 𝑑 ↑𝑟 𝑗 ) ↑𝑟 𝑖 ) → ∪ 𝑖 ∈ { 0 , 1 } ( 𝑑 ↑𝑟 𝑖 ) ⊆ ∪ 𝑖 ∈ { 0 , 1 } ( ∪ 𝑗 ∈ ℕ ( 𝑑 ↑𝑟 𝑗 ) ↑𝑟 𝑖 ) ) |
22 |
|
relexp1g |
⊢ ( 𝑑 ∈ V → ( 𝑑 ↑𝑟 1 ) = 𝑑 ) |
23 |
22
|
elv |
⊢ ( 𝑑 ↑𝑟 1 ) = 𝑑 |
24 |
|
oveq2 |
⊢ ( 𝑗 = 1 → ( 𝑑 ↑𝑟 𝑗 ) = ( 𝑑 ↑𝑟 1 ) ) |
25 |
24
|
ssiun2s |
⊢ ( 1 ∈ ℕ → ( 𝑑 ↑𝑟 1 ) ⊆ ∪ 𝑗 ∈ ℕ ( 𝑑 ↑𝑟 𝑗 ) ) |
26 |
11 25
|
ax-mp |
⊢ ( 𝑑 ↑𝑟 1 ) ⊆ ∪ 𝑗 ∈ ℕ ( 𝑑 ↑𝑟 𝑗 ) |
27 |
23 26
|
eqsstrri |
⊢ 𝑑 ⊆ ∪ 𝑗 ∈ ℕ ( 𝑑 ↑𝑟 𝑗 ) |
28 |
27
|
a1i |
⊢ ( 𝑖 ∈ { 0 , 1 } → 𝑑 ⊆ ∪ 𝑗 ∈ ℕ ( 𝑑 ↑𝑟 𝑗 ) ) |
29 |
|
ovex |
⊢ ( 𝑑 ↑𝑟 𝑗 ) ∈ V |
30 |
5 29
|
iunex |
⊢ ∪ 𝑗 ∈ ℕ ( 𝑑 ↑𝑟 𝑗 ) ∈ V |
31 |
30
|
a1i |
⊢ ( 𝑖 ∈ { 0 , 1 } → ∪ 𝑗 ∈ ℕ ( 𝑑 ↑𝑟 𝑗 ) ∈ V ) |
32 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
33 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
34 |
|
prssi |
⊢ ( ( 0 ∈ ℕ0 ∧ 1 ∈ ℕ0 ) → { 0 , 1 } ⊆ ℕ0 ) |
35 |
32 33 34
|
mp2an |
⊢ { 0 , 1 } ⊆ ℕ0 |
36 |
35
|
sseli |
⊢ ( 𝑖 ∈ { 0 , 1 } → 𝑖 ∈ ℕ0 ) |
37 |
28 31 36
|
relexpss1d |
⊢ ( 𝑖 ∈ { 0 , 1 } → ( 𝑑 ↑𝑟 𝑖 ) ⊆ ( ∪ 𝑗 ∈ ℕ ( 𝑑 ↑𝑟 𝑗 ) ↑𝑟 𝑖 ) ) |
38 |
21 37
|
mprg |
⊢ ∪ 𝑖 ∈ { 0 , 1 } ( 𝑑 ↑𝑟 𝑖 ) ⊆ ∪ 𝑖 ∈ { 0 , 1 } ( ∪ 𝑗 ∈ ℕ ( 𝑑 ↑𝑟 𝑗 ) ↑𝑟 𝑖 ) |
39 |
20 38
|
eqsstri |
⊢ ∪ 𝑘 ∈ { 0 , 1 } ( 𝑑 ↑𝑟 𝑘 ) ⊆ ∪ 𝑖 ∈ { 0 , 1 } ( ∪ 𝑗 ∈ ℕ ( 𝑑 ↑𝑟 𝑗 ) ↑𝑟 𝑖 ) |
40 |
|
oveq2 |
⊢ ( 𝑘 = 𝑗 → ( 𝑑 ↑𝑟 𝑘 ) = ( 𝑑 ↑𝑟 𝑗 ) ) |
41 |
40
|
cbviunv |
⊢ ∪ 𝑘 ∈ ℕ ( 𝑑 ↑𝑟 𝑘 ) = ∪ 𝑗 ∈ ℕ ( 𝑑 ↑𝑟 𝑗 ) |
42 |
|
relexp1g |
⊢ ( ∪ 𝑗 ∈ ℕ ( 𝑑 ↑𝑟 𝑗 ) ∈ V → ( ∪ 𝑗 ∈ ℕ ( 𝑑 ↑𝑟 𝑗 ) ↑𝑟 1 ) = ∪ 𝑗 ∈ ℕ ( 𝑑 ↑𝑟 𝑗 ) ) |
43 |
30 42
|
ax-mp |
⊢ ( ∪ 𝑗 ∈ ℕ ( 𝑑 ↑𝑟 𝑗 ) ↑𝑟 1 ) = ∪ 𝑗 ∈ ℕ ( 𝑑 ↑𝑟 𝑗 ) |
44 |
41 43
|
eqtr4i |
⊢ ∪ 𝑘 ∈ ℕ ( 𝑑 ↑𝑟 𝑘 ) = ( ∪ 𝑗 ∈ ℕ ( 𝑑 ↑𝑟 𝑗 ) ↑𝑟 1 ) |
45 |
|
1ex |
⊢ 1 ∈ V |
46 |
45
|
prid2 |
⊢ 1 ∈ { 0 , 1 } |
47 |
|
oveq2 |
⊢ ( 𝑖 = 1 → ( ∪ 𝑗 ∈ ℕ ( 𝑑 ↑𝑟 𝑗 ) ↑𝑟 𝑖 ) = ( ∪ 𝑗 ∈ ℕ ( 𝑑 ↑𝑟 𝑗 ) ↑𝑟 1 ) ) |
48 |
47
|
ssiun2s |
⊢ ( 1 ∈ { 0 , 1 } → ( ∪ 𝑗 ∈ ℕ ( 𝑑 ↑𝑟 𝑗 ) ↑𝑟 1 ) ⊆ ∪ 𝑖 ∈ { 0 , 1 } ( ∪ 𝑗 ∈ ℕ ( 𝑑 ↑𝑟 𝑗 ) ↑𝑟 𝑖 ) ) |
49 |
46 48
|
ax-mp |
⊢ ( ∪ 𝑗 ∈ ℕ ( 𝑑 ↑𝑟 𝑗 ) ↑𝑟 1 ) ⊆ ∪ 𝑖 ∈ { 0 , 1 } ( ∪ 𝑗 ∈ ℕ ( 𝑑 ↑𝑟 𝑗 ) ↑𝑟 𝑖 ) |
50 |
44 49
|
eqsstri |
⊢ ∪ 𝑘 ∈ ℕ ( 𝑑 ↑𝑟 𝑘 ) ⊆ ∪ 𝑖 ∈ { 0 , 1 } ( ∪ 𝑗 ∈ ℕ ( 𝑑 ↑𝑟 𝑗 ) ↑𝑟 𝑖 ) |
51 |
|
c0ex |
⊢ 0 ∈ V |
52 |
51
|
prid1 |
⊢ 0 ∈ { 0 , 1 } |
53 |
|
oveq2 |
⊢ ( 𝑘 = 0 → ( 𝑑 ↑𝑟 𝑘 ) = ( 𝑑 ↑𝑟 0 ) ) |
54 |
53
|
ssiun2s |
⊢ ( 0 ∈ { 0 , 1 } → ( 𝑑 ↑𝑟 0 ) ⊆ ∪ 𝑘 ∈ { 0 , 1 } ( 𝑑 ↑𝑟 𝑘 ) ) |
55 |
52 54
|
ax-mp |
⊢ ( 𝑑 ↑𝑟 0 ) ⊆ ∪ 𝑘 ∈ { 0 , 1 } ( 𝑑 ↑𝑟 𝑘 ) |
56 |
|
ssid |
⊢ ∪ 𝑘 ∈ ℕ ( 𝑑 ↑𝑟 𝑘 ) ⊆ ∪ 𝑘 ∈ ℕ ( 𝑑 ↑𝑟 𝑘 ) |
57 |
|
unss12 |
⊢ ( ( ( 𝑑 ↑𝑟 0 ) ⊆ ∪ 𝑘 ∈ { 0 , 1 } ( 𝑑 ↑𝑟 𝑘 ) ∧ ∪ 𝑘 ∈ ℕ ( 𝑑 ↑𝑟 𝑘 ) ⊆ ∪ 𝑘 ∈ ℕ ( 𝑑 ↑𝑟 𝑘 ) ) → ( ( 𝑑 ↑𝑟 0 ) ∪ ∪ 𝑘 ∈ ℕ ( 𝑑 ↑𝑟 𝑘 ) ) ⊆ ( ∪ 𝑘 ∈ { 0 , 1 } ( 𝑑 ↑𝑟 𝑘 ) ∪ ∪ 𝑘 ∈ ℕ ( 𝑑 ↑𝑟 𝑘 ) ) ) |
58 |
55 56 57
|
mp2an |
⊢ ( ( 𝑑 ↑𝑟 0 ) ∪ ∪ 𝑘 ∈ ℕ ( 𝑑 ↑𝑟 𝑘 ) ) ⊆ ( ∪ 𝑘 ∈ { 0 , 1 } ( 𝑑 ↑𝑟 𝑘 ) ∪ ∪ 𝑘 ∈ ℕ ( 𝑑 ↑𝑟 𝑘 ) ) |
59 |
|
iuneq1 |
⊢ ( { 0 , 1 } = ( { 0 } ∪ { 1 } ) → ∪ 𝑖 ∈ { 0 , 1 } ( ∪ 𝑗 ∈ ℕ ( 𝑑 ↑𝑟 𝑗 ) ↑𝑟 𝑖 ) = ∪ 𝑖 ∈ ( { 0 } ∪ { 1 } ) ( ∪ 𝑗 ∈ ℕ ( 𝑑 ↑𝑟 𝑗 ) ↑𝑟 𝑖 ) ) |
60 |
8 59
|
ax-mp |
⊢ ∪ 𝑖 ∈ { 0 , 1 } ( ∪ 𝑗 ∈ ℕ ( 𝑑 ↑𝑟 𝑗 ) ↑𝑟 𝑖 ) = ∪ 𝑖 ∈ ( { 0 } ∪ { 1 } ) ( ∪ 𝑗 ∈ ℕ ( 𝑑 ↑𝑟 𝑗 ) ↑𝑟 𝑖 ) |
61 |
|
iunxun |
⊢ ∪ 𝑖 ∈ ( { 0 } ∪ { 1 } ) ( ∪ 𝑗 ∈ ℕ ( 𝑑 ↑𝑟 𝑗 ) ↑𝑟 𝑖 ) = ( ∪ 𝑖 ∈ { 0 } ( ∪ 𝑗 ∈ ℕ ( 𝑑 ↑𝑟 𝑗 ) ↑𝑟 𝑖 ) ∪ ∪ 𝑖 ∈ { 1 } ( ∪ 𝑗 ∈ ℕ ( 𝑑 ↑𝑟 𝑗 ) ↑𝑟 𝑖 ) ) |
62 |
|
oveq2 |
⊢ ( 𝑖 = 0 → ( ∪ 𝑗 ∈ ℕ ( 𝑑 ↑𝑟 𝑗 ) ↑𝑟 𝑖 ) = ( ∪ 𝑗 ∈ ℕ ( 𝑑 ↑𝑟 𝑗 ) ↑𝑟 0 ) ) |
63 |
51 62
|
iunxsn |
⊢ ∪ 𝑖 ∈ { 0 } ( ∪ 𝑗 ∈ ℕ ( 𝑑 ↑𝑟 𝑗 ) ↑𝑟 𝑖 ) = ( ∪ 𝑗 ∈ ℕ ( 𝑑 ↑𝑟 𝑗 ) ↑𝑟 0 ) |
64 |
|
vex |
⊢ 𝑑 ∈ V |
65 |
|
nnssnn0 |
⊢ ℕ ⊆ ℕ0 |
66 |
|
inelcm |
⊢ ( ( 1 ∈ { 0 , 1 } ∧ 1 ∈ ℕ ) → ( { 0 , 1 } ∩ ℕ ) ≠ ∅ ) |
67 |
46 11 66
|
mp2an |
⊢ ( { 0 , 1 } ∩ ℕ ) ≠ ∅ |
68 |
|
iunrelexp0 |
⊢ ( ( 𝑑 ∈ V ∧ ℕ ⊆ ℕ0 ∧ ( { 0 , 1 } ∩ ℕ ) ≠ ∅ ) → ( ∪ 𝑗 ∈ ℕ ( 𝑑 ↑𝑟 𝑗 ) ↑𝑟 0 ) = ( 𝑑 ↑𝑟 0 ) ) |
69 |
64 65 67 68
|
mp3an |
⊢ ( ∪ 𝑗 ∈ ℕ ( 𝑑 ↑𝑟 𝑗 ) ↑𝑟 0 ) = ( 𝑑 ↑𝑟 0 ) |
70 |
63 69
|
eqtri |
⊢ ∪ 𝑖 ∈ { 0 } ( ∪ 𝑗 ∈ ℕ ( 𝑑 ↑𝑟 𝑗 ) ↑𝑟 𝑖 ) = ( 𝑑 ↑𝑟 0 ) |
71 |
45 47
|
iunxsn |
⊢ ∪ 𝑖 ∈ { 1 } ( ∪ 𝑗 ∈ ℕ ( 𝑑 ↑𝑟 𝑗 ) ↑𝑟 𝑖 ) = ( ∪ 𝑗 ∈ ℕ ( 𝑑 ↑𝑟 𝑗 ) ↑𝑟 1 ) |
72 |
43 41
|
eqtr4i |
⊢ ( ∪ 𝑗 ∈ ℕ ( 𝑑 ↑𝑟 𝑗 ) ↑𝑟 1 ) = ∪ 𝑘 ∈ ℕ ( 𝑑 ↑𝑟 𝑘 ) |
73 |
71 72
|
eqtri |
⊢ ∪ 𝑖 ∈ { 1 } ( ∪ 𝑗 ∈ ℕ ( 𝑑 ↑𝑟 𝑗 ) ↑𝑟 𝑖 ) = ∪ 𝑘 ∈ ℕ ( 𝑑 ↑𝑟 𝑘 ) |
74 |
70 73
|
uneq12i |
⊢ ( ∪ 𝑖 ∈ { 0 } ( ∪ 𝑗 ∈ ℕ ( 𝑑 ↑𝑟 𝑗 ) ↑𝑟 𝑖 ) ∪ ∪ 𝑖 ∈ { 1 } ( ∪ 𝑗 ∈ ℕ ( 𝑑 ↑𝑟 𝑗 ) ↑𝑟 𝑖 ) ) = ( ( 𝑑 ↑𝑟 0 ) ∪ ∪ 𝑘 ∈ ℕ ( 𝑑 ↑𝑟 𝑘 ) ) |
75 |
60 61 74
|
3eqtri |
⊢ ∪ 𝑖 ∈ { 0 , 1 } ( ∪ 𝑗 ∈ ℕ ( 𝑑 ↑𝑟 𝑗 ) ↑𝑟 𝑖 ) = ( ( 𝑑 ↑𝑟 0 ) ∪ ∪ 𝑘 ∈ ℕ ( 𝑑 ↑𝑟 𝑘 ) ) |
76 |
|
iunxun |
⊢ ∪ 𝑘 ∈ ( { 0 , 1 } ∪ ℕ ) ( 𝑑 ↑𝑟 𝑘 ) = ( ∪ 𝑘 ∈ { 0 , 1 } ( 𝑑 ↑𝑟 𝑘 ) ∪ ∪ 𝑘 ∈ ℕ ( 𝑑 ↑𝑟 𝑘 ) ) |
77 |
58 75 76
|
3sstr4i |
⊢ ∪ 𝑖 ∈ { 0 , 1 } ( ∪ 𝑗 ∈ ℕ ( 𝑑 ↑𝑟 𝑗 ) ↑𝑟 𝑖 ) ⊆ ∪ 𝑘 ∈ ( { 0 , 1 } ∪ ℕ ) ( 𝑑 ↑𝑟 𝑘 ) |
78 |
1 2 3 4 5 18 39 50 77
|
comptiunov2i |
⊢ ( r* ∘ t+ ) = t* |