Description: Composition with the reflexive-transitive closure absorbs the transitive closure. (Contributed by RP, 13-Jun-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | cortrcltrcl | ⊢ ( t* ∘ t+ ) = t* |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | corcltrcl | ⊢ ( r* ∘ t+ ) = t* | |
2 | 1 | eqcomi | ⊢ t* = ( r* ∘ t+ ) |
3 | 2 | coeq1i | ⊢ ( t* ∘ t+ ) = ( ( r* ∘ t+ ) ∘ t+ ) |
4 | coass | ⊢ ( ( r* ∘ t+ ) ∘ t+ ) = ( r* ∘ ( t+ ∘ t+ ) ) | |
5 | cotrcltrcl | ⊢ ( t+ ∘ t+ ) = t+ | |
6 | 5 | coeq2i | ⊢ ( r* ∘ ( t+ ∘ t+ ) ) = ( r* ∘ t+ ) |
7 | 6 1 | eqtri | ⊢ ( r* ∘ ( t+ ∘ t+ ) ) = t* |
8 | 4 7 | eqtri | ⊢ ( ( r* ∘ t+ ) ∘ t+ ) = t* |
9 | 3 8 | eqtri | ⊢ ( t* ∘ t+ ) = t* |