Metamath Proof Explorer


Theorem cortrcltrcl

Description: Composition with the reflexive-transitive closure absorbs the transitive closure. (Contributed by RP, 13-Jun-2020)

Ref Expression
Assertion cortrcltrcl t*t+=t*

Proof

Step Hyp Ref Expression
1 corcltrcl r*t+=t*
2 1 eqcomi t*=r*t+
3 2 coeq1i t*t+=r*t+t+
4 coass r*t+t+=r*t+t+
5 cotrcltrcl t+t+=t+
6 5 coeq2i r*t+t+=r*t+
7 6 1 eqtri r*t+t+=t*
8 4 7 eqtri r*t+t+=t*
9 3 8 eqtri t*t+=t*