Step |
Hyp |
Ref |
Expression |
1 |
|
dftrcl3 |
|
2 |
|
dftrcl3 |
|
3 |
|
dftrcl3 |
|
4 |
|
nnex |
|
5 |
|
unidm |
|
6 |
5
|
eqcomi |
|
7 |
|
1ex |
|
8 |
|
oveq2 |
|
9 |
7 8
|
iunxsn |
|
10 |
|
ovex |
|
11 |
4 10
|
iunex |
|
12 |
|
relexp1g |
|
13 |
11 12
|
ax-mp |
|
14 |
|
oveq2 |
|
15 |
14
|
cbviunv |
|
16 |
13 15
|
eqtri |
|
17 |
9 16
|
eqtri |
|
18 |
17
|
eqcomi |
|
19 |
|
1nn |
|
20 |
|
snssi |
|
21 |
|
iunss1 |
|
22 |
19 20 21
|
mp2b |
|
23 |
18 22
|
eqsstri |
|
24 |
|
iunss |
|
25 |
|
oveq2 |
|
26 |
25
|
sseq1d |
|
27 |
|
oveq2 |
|
28 |
27
|
sseq1d |
|
29 |
|
oveq2 |
|
30 |
29
|
sseq1d |
|
31 |
|
oveq2 |
|
32 |
31
|
sseq1d |
|
33 |
16
|
eqimssi |
|
34 |
|
simpl |
|
35 |
|
relexpsucnnr |
|
36 |
11 34 35
|
sylancr |
|
37 |
|
coss1 |
|
38 |
37
|
adantl |
|
39 |
15
|
coeq2i |
|
40 |
|
trclfvcotrg |
|
41 |
|
oveq1 |
|
42 |
41
|
iuneq2d |
|
43 |
|
ovex |
|
44 |
4 43
|
iunex |
|
45 |
42 3 44
|
fvmpt |
|
46 |
45
|
elv |
|
47 |
46 46
|
coeq12i |
|
48 |
40 47 46
|
3sstr3i |
|
49 |
39 48
|
eqsstri |
|
50 |
38 49
|
sstrdi |
|
51 |
36 50
|
eqsstrd |
|
52 |
51
|
ex |
|
53 |
26 28 30 32 33 52
|
nnind |
|
54 |
24 53
|
mprgbir |
|
55 |
|
iuneq1 |
|
56 |
6 55
|
ax-mp |
|
57 |
54 56
|
sseqtri |
|
58 |
1 2 3 4 4 6 23 23 57
|
comptiunov2i |
|