Metamath Proof Explorer


Theorem cotrcltrcl

Description: The transitive closure is idempotent. (Contributed by RP, 16-Jun-2020)

Ref Expression
Assertion cotrcltrcl ( t+ ∘ t+ ) = t+

Proof

Step Hyp Ref Expression
1 dftrcl3 t+ = ( 𝑎 ∈ V ↦ 𝑖 ∈ ℕ ( 𝑎𝑟 𝑖 ) )
2 dftrcl3 t+ = ( 𝑏 ∈ V ↦ 𝑗 ∈ ℕ ( 𝑏𝑟 𝑗 ) )
3 dftrcl3 t+ = ( 𝑐 ∈ V ↦ 𝑘 ∈ ℕ ( 𝑐𝑟 𝑘 ) )
4 nnex ℕ ∈ V
5 unidm ( ℕ ∪ ℕ ) = ℕ
6 5 eqcomi ℕ = ( ℕ ∪ ℕ )
7 1ex 1 ∈ V
8 oveq2 ( 𝑖 = 1 → ( 𝑗 ∈ ℕ ( 𝑑𝑟 𝑗 ) ↑𝑟 𝑖 ) = ( 𝑗 ∈ ℕ ( 𝑑𝑟 𝑗 ) ↑𝑟 1 ) )
9 7 8 iunxsn 𝑖 ∈ { 1 } ( 𝑗 ∈ ℕ ( 𝑑𝑟 𝑗 ) ↑𝑟 𝑖 ) = ( 𝑗 ∈ ℕ ( 𝑑𝑟 𝑗 ) ↑𝑟 1 )
10 ovex ( 𝑑𝑟 𝑗 ) ∈ V
11 4 10 iunex 𝑗 ∈ ℕ ( 𝑑𝑟 𝑗 ) ∈ V
12 relexp1g ( 𝑗 ∈ ℕ ( 𝑑𝑟 𝑗 ) ∈ V → ( 𝑗 ∈ ℕ ( 𝑑𝑟 𝑗 ) ↑𝑟 1 ) = 𝑗 ∈ ℕ ( 𝑑𝑟 𝑗 ) )
13 11 12 ax-mp ( 𝑗 ∈ ℕ ( 𝑑𝑟 𝑗 ) ↑𝑟 1 ) = 𝑗 ∈ ℕ ( 𝑑𝑟 𝑗 )
14 oveq2 ( 𝑗 = 𝑘 → ( 𝑑𝑟 𝑗 ) = ( 𝑑𝑟 𝑘 ) )
15 14 cbviunv 𝑗 ∈ ℕ ( 𝑑𝑟 𝑗 ) = 𝑘 ∈ ℕ ( 𝑑𝑟 𝑘 )
16 13 15 eqtri ( 𝑗 ∈ ℕ ( 𝑑𝑟 𝑗 ) ↑𝑟 1 ) = 𝑘 ∈ ℕ ( 𝑑𝑟 𝑘 )
17 9 16 eqtri 𝑖 ∈ { 1 } ( 𝑗 ∈ ℕ ( 𝑑𝑟 𝑗 ) ↑𝑟 𝑖 ) = 𝑘 ∈ ℕ ( 𝑑𝑟 𝑘 )
18 17 eqcomi 𝑘 ∈ ℕ ( 𝑑𝑟 𝑘 ) = 𝑖 ∈ { 1 } ( 𝑗 ∈ ℕ ( 𝑑𝑟 𝑗 ) ↑𝑟 𝑖 )
19 1nn 1 ∈ ℕ
20 snssi ( 1 ∈ ℕ → { 1 } ⊆ ℕ )
21 iunss1 ( { 1 } ⊆ ℕ → 𝑖 ∈ { 1 } ( 𝑗 ∈ ℕ ( 𝑑𝑟 𝑗 ) ↑𝑟 𝑖 ) ⊆ 𝑖 ∈ ℕ ( 𝑗 ∈ ℕ ( 𝑑𝑟 𝑗 ) ↑𝑟 𝑖 ) )
22 19 20 21 mp2b 𝑖 ∈ { 1 } ( 𝑗 ∈ ℕ ( 𝑑𝑟 𝑗 ) ↑𝑟 𝑖 ) ⊆ 𝑖 ∈ ℕ ( 𝑗 ∈ ℕ ( 𝑑𝑟 𝑗 ) ↑𝑟 𝑖 )
23 18 22 eqsstri 𝑘 ∈ ℕ ( 𝑑𝑟 𝑘 ) ⊆ 𝑖 ∈ ℕ ( 𝑗 ∈ ℕ ( 𝑑𝑟 𝑗 ) ↑𝑟 𝑖 )
24 iunss ( 𝑖 ∈ ℕ ( 𝑗 ∈ ℕ ( 𝑑𝑟 𝑗 ) ↑𝑟 𝑖 ) ⊆ 𝑘 ∈ ℕ ( 𝑑𝑟 𝑘 ) ↔ ∀ 𝑖 ∈ ℕ ( 𝑗 ∈ ℕ ( 𝑑𝑟 𝑗 ) ↑𝑟 𝑖 ) ⊆ 𝑘 ∈ ℕ ( 𝑑𝑟 𝑘 ) )
25 oveq2 ( 𝑥 = 1 → ( 𝑗 ∈ ℕ ( 𝑑𝑟 𝑗 ) ↑𝑟 𝑥 ) = ( 𝑗 ∈ ℕ ( 𝑑𝑟 𝑗 ) ↑𝑟 1 ) )
26 25 sseq1d ( 𝑥 = 1 → ( ( 𝑗 ∈ ℕ ( 𝑑𝑟 𝑗 ) ↑𝑟 𝑥 ) ⊆ 𝑘 ∈ ℕ ( 𝑑𝑟 𝑘 ) ↔ ( 𝑗 ∈ ℕ ( 𝑑𝑟 𝑗 ) ↑𝑟 1 ) ⊆ 𝑘 ∈ ℕ ( 𝑑𝑟 𝑘 ) ) )
27 oveq2 ( 𝑥 = 𝑦 → ( 𝑗 ∈ ℕ ( 𝑑𝑟 𝑗 ) ↑𝑟 𝑥 ) = ( 𝑗 ∈ ℕ ( 𝑑𝑟 𝑗 ) ↑𝑟 𝑦 ) )
28 27 sseq1d ( 𝑥 = 𝑦 → ( ( 𝑗 ∈ ℕ ( 𝑑𝑟 𝑗 ) ↑𝑟 𝑥 ) ⊆ 𝑘 ∈ ℕ ( 𝑑𝑟 𝑘 ) ↔ ( 𝑗 ∈ ℕ ( 𝑑𝑟 𝑗 ) ↑𝑟 𝑦 ) ⊆ 𝑘 ∈ ℕ ( 𝑑𝑟 𝑘 ) ) )
29 oveq2 ( 𝑥 = ( 𝑦 + 1 ) → ( 𝑗 ∈ ℕ ( 𝑑𝑟 𝑗 ) ↑𝑟 𝑥 ) = ( 𝑗 ∈ ℕ ( 𝑑𝑟 𝑗 ) ↑𝑟 ( 𝑦 + 1 ) ) )
30 29 sseq1d ( 𝑥 = ( 𝑦 + 1 ) → ( ( 𝑗 ∈ ℕ ( 𝑑𝑟 𝑗 ) ↑𝑟 𝑥 ) ⊆ 𝑘 ∈ ℕ ( 𝑑𝑟 𝑘 ) ↔ ( 𝑗 ∈ ℕ ( 𝑑𝑟 𝑗 ) ↑𝑟 ( 𝑦 + 1 ) ) ⊆ 𝑘 ∈ ℕ ( 𝑑𝑟 𝑘 ) ) )
31 oveq2 ( 𝑥 = 𝑖 → ( 𝑗 ∈ ℕ ( 𝑑𝑟 𝑗 ) ↑𝑟 𝑥 ) = ( 𝑗 ∈ ℕ ( 𝑑𝑟 𝑗 ) ↑𝑟 𝑖 ) )
32 31 sseq1d ( 𝑥 = 𝑖 → ( ( 𝑗 ∈ ℕ ( 𝑑𝑟 𝑗 ) ↑𝑟 𝑥 ) ⊆ 𝑘 ∈ ℕ ( 𝑑𝑟 𝑘 ) ↔ ( 𝑗 ∈ ℕ ( 𝑑𝑟 𝑗 ) ↑𝑟 𝑖 ) ⊆ 𝑘 ∈ ℕ ( 𝑑𝑟 𝑘 ) ) )
33 16 eqimssi ( 𝑗 ∈ ℕ ( 𝑑𝑟 𝑗 ) ↑𝑟 1 ) ⊆ 𝑘 ∈ ℕ ( 𝑑𝑟 𝑘 )
34 simpl ( ( 𝑦 ∈ ℕ ∧ ( 𝑗 ∈ ℕ ( 𝑑𝑟 𝑗 ) ↑𝑟 𝑦 ) ⊆ 𝑘 ∈ ℕ ( 𝑑𝑟 𝑘 ) ) → 𝑦 ∈ ℕ )
35 relexpsucnnr ( ( 𝑗 ∈ ℕ ( 𝑑𝑟 𝑗 ) ∈ V ∧ 𝑦 ∈ ℕ ) → ( 𝑗 ∈ ℕ ( 𝑑𝑟 𝑗 ) ↑𝑟 ( 𝑦 + 1 ) ) = ( ( 𝑗 ∈ ℕ ( 𝑑𝑟 𝑗 ) ↑𝑟 𝑦 ) ∘ 𝑗 ∈ ℕ ( 𝑑𝑟 𝑗 ) ) )
36 11 34 35 sylancr ( ( 𝑦 ∈ ℕ ∧ ( 𝑗 ∈ ℕ ( 𝑑𝑟 𝑗 ) ↑𝑟 𝑦 ) ⊆ 𝑘 ∈ ℕ ( 𝑑𝑟 𝑘 ) ) → ( 𝑗 ∈ ℕ ( 𝑑𝑟 𝑗 ) ↑𝑟 ( 𝑦 + 1 ) ) = ( ( 𝑗 ∈ ℕ ( 𝑑𝑟 𝑗 ) ↑𝑟 𝑦 ) ∘ 𝑗 ∈ ℕ ( 𝑑𝑟 𝑗 ) ) )
37 coss1 ( ( 𝑗 ∈ ℕ ( 𝑑𝑟 𝑗 ) ↑𝑟 𝑦 ) ⊆ 𝑘 ∈ ℕ ( 𝑑𝑟 𝑘 ) → ( ( 𝑗 ∈ ℕ ( 𝑑𝑟 𝑗 ) ↑𝑟 𝑦 ) ∘ 𝑗 ∈ ℕ ( 𝑑𝑟 𝑗 ) ) ⊆ ( 𝑘 ∈ ℕ ( 𝑑𝑟 𝑘 ) ∘ 𝑗 ∈ ℕ ( 𝑑𝑟 𝑗 ) ) )
38 37 adantl ( ( 𝑦 ∈ ℕ ∧ ( 𝑗 ∈ ℕ ( 𝑑𝑟 𝑗 ) ↑𝑟 𝑦 ) ⊆ 𝑘 ∈ ℕ ( 𝑑𝑟 𝑘 ) ) → ( ( 𝑗 ∈ ℕ ( 𝑑𝑟 𝑗 ) ↑𝑟 𝑦 ) ∘ 𝑗 ∈ ℕ ( 𝑑𝑟 𝑗 ) ) ⊆ ( 𝑘 ∈ ℕ ( 𝑑𝑟 𝑘 ) ∘ 𝑗 ∈ ℕ ( 𝑑𝑟 𝑗 ) ) )
39 15 coeq2i ( 𝑘 ∈ ℕ ( 𝑑𝑟 𝑘 ) ∘ 𝑗 ∈ ℕ ( 𝑑𝑟 𝑗 ) ) = ( 𝑘 ∈ ℕ ( 𝑑𝑟 𝑘 ) ∘ 𝑘 ∈ ℕ ( 𝑑𝑟 𝑘 ) )
40 trclfvcotrg ( ( t+ ‘ 𝑑 ) ∘ ( t+ ‘ 𝑑 ) ) ⊆ ( t+ ‘ 𝑑 )
41 oveq1 ( 𝑐 = 𝑑 → ( 𝑐𝑟 𝑘 ) = ( 𝑑𝑟 𝑘 ) )
42 41 iuneq2d ( 𝑐 = 𝑑 𝑘 ∈ ℕ ( 𝑐𝑟 𝑘 ) = 𝑘 ∈ ℕ ( 𝑑𝑟 𝑘 ) )
43 ovex ( 𝑑𝑟 𝑘 ) ∈ V
44 4 43 iunex 𝑘 ∈ ℕ ( 𝑑𝑟 𝑘 ) ∈ V
45 42 3 44 fvmpt ( 𝑑 ∈ V → ( t+ ‘ 𝑑 ) = 𝑘 ∈ ℕ ( 𝑑𝑟 𝑘 ) )
46 45 elv ( t+ ‘ 𝑑 ) = 𝑘 ∈ ℕ ( 𝑑𝑟 𝑘 )
47 46 46 coeq12i ( ( t+ ‘ 𝑑 ) ∘ ( t+ ‘ 𝑑 ) ) = ( 𝑘 ∈ ℕ ( 𝑑𝑟 𝑘 ) ∘ 𝑘 ∈ ℕ ( 𝑑𝑟 𝑘 ) )
48 40 47 46 3sstr3i ( 𝑘 ∈ ℕ ( 𝑑𝑟 𝑘 ) ∘ 𝑘 ∈ ℕ ( 𝑑𝑟 𝑘 ) ) ⊆ 𝑘 ∈ ℕ ( 𝑑𝑟 𝑘 )
49 39 48 eqsstri ( 𝑘 ∈ ℕ ( 𝑑𝑟 𝑘 ) ∘ 𝑗 ∈ ℕ ( 𝑑𝑟 𝑗 ) ) ⊆ 𝑘 ∈ ℕ ( 𝑑𝑟 𝑘 )
50 38 49 sstrdi ( ( 𝑦 ∈ ℕ ∧ ( 𝑗 ∈ ℕ ( 𝑑𝑟 𝑗 ) ↑𝑟 𝑦 ) ⊆ 𝑘 ∈ ℕ ( 𝑑𝑟 𝑘 ) ) → ( ( 𝑗 ∈ ℕ ( 𝑑𝑟 𝑗 ) ↑𝑟 𝑦 ) ∘ 𝑗 ∈ ℕ ( 𝑑𝑟 𝑗 ) ) ⊆ 𝑘 ∈ ℕ ( 𝑑𝑟 𝑘 ) )
51 36 50 eqsstrd ( ( 𝑦 ∈ ℕ ∧ ( 𝑗 ∈ ℕ ( 𝑑𝑟 𝑗 ) ↑𝑟 𝑦 ) ⊆ 𝑘 ∈ ℕ ( 𝑑𝑟 𝑘 ) ) → ( 𝑗 ∈ ℕ ( 𝑑𝑟 𝑗 ) ↑𝑟 ( 𝑦 + 1 ) ) ⊆ 𝑘 ∈ ℕ ( 𝑑𝑟 𝑘 ) )
52 51 ex ( 𝑦 ∈ ℕ → ( ( 𝑗 ∈ ℕ ( 𝑑𝑟 𝑗 ) ↑𝑟 𝑦 ) ⊆ 𝑘 ∈ ℕ ( 𝑑𝑟 𝑘 ) → ( 𝑗 ∈ ℕ ( 𝑑𝑟 𝑗 ) ↑𝑟 ( 𝑦 + 1 ) ) ⊆ 𝑘 ∈ ℕ ( 𝑑𝑟 𝑘 ) ) )
53 26 28 30 32 33 52 nnind ( 𝑖 ∈ ℕ → ( 𝑗 ∈ ℕ ( 𝑑𝑟 𝑗 ) ↑𝑟 𝑖 ) ⊆ 𝑘 ∈ ℕ ( 𝑑𝑟 𝑘 ) )
54 24 53 mprgbir 𝑖 ∈ ℕ ( 𝑗 ∈ ℕ ( 𝑑𝑟 𝑗 ) ↑𝑟 𝑖 ) ⊆ 𝑘 ∈ ℕ ( 𝑑𝑟 𝑘 )
55 iuneq1 ( ℕ = ( ℕ ∪ ℕ ) → 𝑘 ∈ ℕ ( 𝑑𝑟 𝑘 ) = 𝑘 ∈ ( ℕ ∪ ℕ ) ( 𝑑𝑟 𝑘 ) )
56 6 55 ax-mp 𝑘 ∈ ℕ ( 𝑑𝑟 𝑘 ) = 𝑘 ∈ ( ℕ ∪ ℕ ) ( 𝑑𝑟 𝑘 )
57 54 56 sseqtri 𝑖 ∈ ℕ ( 𝑗 ∈ ℕ ( 𝑑𝑟 𝑗 ) ↑𝑟 𝑖 ) ⊆ 𝑘 ∈ ( ℕ ∪ ℕ ) ( 𝑑𝑟 𝑘 )
58 1 2 3 4 4 6 23 23 57 comptiunov2i ( t+ ∘ t+ ) = t+