Step |
Hyp |
Ref |
Expression |
1 |
|
dftrcl3 |
⊢ t+ = ( 𝑎 ∈ V ↦ ∪ 𝑖 ∈ ℕ ( 𝑎 ↑𝑟 𝑖 ) ) |
2 |
|
dftrcl3 |
⊢ t+ = ( 𝑏 ∈ V ↦ ∪ 𝑗 ∈ ℕ ( 𝑏 ↑𝑟 𝑗 ) ) |
3 |
|
dftrcl3 |
⊢ t+ = ( 𝑐 ∈ V ↦ ∪ 𝑘 ∈ ℕ ( 𝑐 ↑𝑟 𝑘 ) ) |
4 |
|
nnex |
⊢ ℕ ∈ V |
5 |
|
unidm |
⊢ ( ℕ ∪ ℕ ) = ℕ |
6 |
5
|
eqcomi |
⊢ ℕ = ( ℕ ∪ ℕ ) |
7 |
|
1ex |
⊢ 1 ∈ V |
8 |
|
oveq2 |
⊢ ( 𝑖 = 1 → ( ∪ 𝑗 ∈ ℕ ( 𝑑 ↑𝑟 𝑗 ) ↑𝑟 𝑖 ) = ( ∪ 𝑗 ∈ ℕ ( 𝑑 ↑𝑟 𝑗 ) ↑𝑟 1 ) ) |
9 |
7 8
|
iunxsn |
⊢ ∪ 𝑖 ∈ { 1 } ( ∪ 𝑗 ∈ ℕ ( 𝑑 ↑𝑟 𝑗 ) ↑𝑟 𝑖 ) = ( ∪ 𝑗 ∈ ℕ ( 𝑑 ↑𝑟 𝑗 ) ↑𝑟 1 ) |
10 |
|
ovex |
⊢ ( 𝑑 ↑𝑟 𝑗 ) ∈ V |
11 |
4 10
|
iunex |
⊢ ∪ 𝑗 ∈ ℕ ( 𝑑 ↑𝑟 𝑗 ) ∈ V |
12 |
|
relexp1g |
⊢ ( ∪ 𝑗 ∈ ℕ ( 𝑑 ↑𝑟 𝑗 ) ∈ V → ( ∪ 𝑗 ∈ ℕ ( 𝑑 ↑𝑟 𝑗 ) ↑𝑟 1 ) = ∪ 𝑗 ∈ ℕ ( 𝑑 ↑𝑟 𝑗 ) ) |
13 |
11 12
|
ax-mp |
⊢ ( ∪ 𝑗 ∈ ℕ ( 𝑑 ↑𝑟 𝑗 ) ↑𝑟 1 ) = ∪ 𝑗 ∈ ℕ ( 𝑑 ↑𝑟 𝑗 ) |
14 |
|
oveq2 |
⊢ ( 𝑗 = 𝑘 → ( 𝑑 ↑𝑟 𝑗 ) = ( 𝑑 ↑𝑟 𝑘 ) ) |
15 |
14
|
cbviunv |
⊢ ∪ 𝑗 ∈ ℕ ( 𝑑 ↑𝑟 𝑗 ) = ∪ 𝑘 ∈ ℕ ( 𝑑 ↑𝑟 𝑘 ) |
16 |
13 15
|
eqtri |
⊢ ( ∪ 𝑗 ∈ ℕ ( 𝑑 ↑𝑟 𝑗 ) ↑𝑟 1 ) = ∪ 𝑘 ∈ ℕ ( 𝑑 ↑𝑟 𝑘 ) |
17 |
9 16
|
eqtri |
⊢ ∪ 𝑖 ∈ { 1 } ( ∪ 𝑗 ∈ ℕ ( 𝑑 ↑𝑟 𝑗 ) ↑𝑟 𝑖 ) = ∪ 𝑘 ∈ ℕ ( 𝑑 ↑𝑟 𝑘 ) |
18 |
17
|
eqcomi |
⊢ ∪ 𝑘 ∈ ℕ ( 𝑑 ↑𝑟 𝑘 ) = ∪ 𝑖 ∈ { 1 } ( ∪ 𝑗 ∈ ℕ ( 𝑑 ↑𝑟 𝑗 ) ↑𝑟 𝑖 ) |
19 |
|
1nn |
⊢ 1 ∈ ℕ |
20 |
|
snssi |
⊢ ( 1 ∈ ℕ → { 1 } ⊆ ℕ ) |
21 |
|
iunss1 |
⊢ ( { 1 } ⊆ ℕ → ∪ 𝑖 ∈ { 1 } ( ∪ 𝑗 ∈ ℕ ( 𝑑 ↑𝑟 𝑗 ) ↑𝑟 𝑖 ) ⊆ ∪ 𝑖 ∈ ℕ ( ∪ 𝑗 ∈ ℕ ( 𝑑 ↑𝑟 𝑗 ) ↑𝑟 𝑖 ) ) |
22 |
19 20 21
|
mp2b |
⊢ ∪ 𝑖 ∈ { 1 } ( ∪ 𝑗 ∈ ℕ ( 𝑑 ↑𝑟 𝑗 ) ↑𝑟 𝑖 ) ⊆ ∪ 𝑖 ∈ ℕ ( ∪ 𝑗 ∈ ℕ ( 𝑑 ↑𝑟 𝑗 ) ↑𝑟 𝑖 ) |
23 |
18 22
|
eqsstri |
⊢ ∪ 𝑘 ∈ ℕ ( 𝑑 ↑𝑟 𝑘 ) ⊆ ∪ 𝑖 ∈ ℕ ( ∪ 𝑗 ∈ ℕ ( 𝑑 ↑𝑟 𝑗 ) ↑𝑟 𝑖 ) |
24 |
|
iunss |
⊢ ( ∪ 𝑖 ∈ ℕ ( ∪ 𝑗 ∈ ℕ ( 𝑑 ↑𝑟 𝑗 ) ↑𝑟 𝑖 ) ⊆ ∪ 𝑘 ∈ ℕ ( 𝑑 ↑𝑟 𝑘 ) ↔ ∀ 𝑖 ∈ ℕ ( ∪ 𝑗 ∈ ℕ ( 𝑑 ↑𝑟 𝑗 ) ↑𝑟 𝑖 ) ⊆ ∪ 𝑘 ∈ ℕ ( 𝑑 ↑𝑟 𝑘 ) ) |
25 |
|
oveq2 |
⊢ ( 𝑥 = 1 → ( ∪ 𝑗 ∈ ℕ ( 𝑑 ↑𝑟 𝑗 ) ↑𝑟 𝑥 ) = ( ∪ 𝑗 ∈ ℕ ( 𝑑 ↑𝑟 𝑗 ) ↑𝑟 1 ) ) |
26 |
25
|
sseq1d |
⊢ ( 𝑥 = 1 → ( ( ∪ 𝑗 ∈ ℕ ( 𝑑 ↑𝑟 𝑗 ) ↑𝑟 𝑥 ) ⊆ ∪ 𝑘 ∈ ℕ ( 𝑑 ↑𝑟 𝑘 ) ↔ ( ∪ 𝑗 ∈ ℕ ( 𝑑 ↑𝑟 𝑗 ) ↑𝑟 1 ) ⊆ ∪ 𝑘 ∈ ℕ ( 𝑑 ↑𝑟 𝑘 ) ) ) |
27 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( ∪ 𝑗 ∈ ℕ ( 𝑑 ↑𝑟 𝑗 ) ↑𝑟 𝑥 ) = ( ∪ 𝑗 ∈ ℕ ( 𝑑 ↑𝑟 𝑗 ) ↑𝑟 𝑦 ) ) |
28 |
27
|
sseq1d |
⊢ ( 𝑥 = 𝑦 → ( ( ∪ 𝑗 ∈ ℕ ( 𝑑 ↑𝑟 𝑗 ) ↑𝑟 𝑥 ) ⊆ ∪ 𝑘 ∈ ℕ ( 𝑑 ↑𝑟 𝑘 ) ↔ ( ∪ 𝑗 ∈ ℕ ( 𝑑 ↑𝑟 𝑗 ) ↑𝑟 𝑦 ) ⊆ ∪ 𝑘 ∈ ℕ ( 𝑑 ↑𝑟 𝑘 ) ) ) |
29 |
|
oveq2 |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ∪ 𝑗 ∈ ℕ ( 𝑑 ↑𝑟 𝑗 ) ↑𝑟 𝑥 ) = ( ∪ 𝑗 ∈ ℕ ( 𝑑 ↑𝑟 𝑗 ) ↑𝑟 ( 𝑦 + 1 ) ) ) |
30 |
29
|
sseq1d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( ∪ 𝑗 ∈ ℕ ( 𝑑 ↑𝑟 𝑗 ) ↑𝑟 𝑥 ) ⊆ ∪ 𝑘 ∈ ℕ ( 𝑑 ↑𝑟 𝑘 ) ↔ ( ∪ 𝑗 ∈ ℕ ( 𝑑 ↑𝑟 𝑗 ) ↑𝑟 ( 𝑦 + 1 ) ) ⊆ ∪ 𝑘 ∈ ℕ ( 𝑑 ↑𝑟 𝑘 ) ) ) |
31 |
|
oveq2 |
⊢ ( 𝑥 = 𝑖 → ( ∪ 𝑗 ∈ ℕ ( 𝑑 ↑𝑟 𝑗 ) ↑𝑟 𝑥 ) = ( ∪ 𝑗 ∈ ℕ ( 𝑑 ↑𝑟 𝑗 ) ↑𝑟 𝑖 ) ) |
32 |
31
|
sseq1d |
⊢ ( 𝑥 = 𝑖 → ( ( ∪ 𝑗 ∈ ℕ ( 𝑑 ↑𝑟 𝑗 ) ↑𝑟 𝑥 ) ⊆ ∪ 𝑘 ∈ ℕ ( 𝑑 ↑𝑟 𝑘 ) ↔ ( ∪ 𝑗 ∈ ℕ ( 𝑑 ↑𝑟 𝑗 ) ↑𝑟 𝑖 ) ⊆ ∪ 𝑘 ∈ ℕ ( 𝑑 ↑𝑟 𝑘 ) ) ) |
33 |
16
|
eqimssi |
⊢ ( ∪ 𝑗 ∈ ℕ ( 𝑑 ↑𝑟 𝑗 ) ↑𝑟 1 ) ⊆ ∪ 𝑘 ∈ ℕ ( 𝑑 ↑𝑟 𝑘 ) |
34 |
|
simpl |
⊢ ( ( 𝑦 ∈ ℕ ∧ ( ∪ 𝑗 ∈ ℕ ( 𝑑 ↑𝑟 𝑗 ) ↑𝑟 𝑦 ) ⊆ ∪ 𝑘 ∈ ℕ ( 𝑑 ↑𝑟 𝑘 ) ) → 𝑦 ∈ ℕ ) |
35 |
|
relexpsucnnr |
⊢ ( ( ∪ 𝑗 ∈ ℕ ( 𝑑 ↑𝑟 𝑗 ) ∈ V ∧ 𝑦 ∈ ℕ ) → ( ∪ 𝑗 ∈ ℕ ( 𝑑 ↑𝑟 𝑗 ) ↑𝑟 ( 𝑦 + 1 ) ) = ( ( ∪ 𝑗 ∈ ℕ ( 𝑑 ↑𝑟 𝑗 ) ↑𝑟 𝑦 ) ∘ ∪ 𝑗 ∈ ℕ ( 𝑑 ↑𝑟 𝑗 ) ) ) |
36 |
11 34 35
|
sylancr |
⊢ ( ( 𝑦 ∈ ℕ ∧ ( ∪ 𝑗 ∈ ℕ ( 𝑑 ↑𝑟 𝑗 ) ↑𝑟 𝑦 ) ⊆ ∪ 𝑘 ∈ ℕ ( 𝑑 ↑𝑟 𝑘 ) ) → ( ∪ 𝑗 ∈ ℕ ( 𝑑 ↑𝑟 𝑗 ) ↑𝑟 ( 𝑦 + 1 ) ) = ( ( ∪ 𝑗 ∈ ℕ ( 𝑑 ↑𝑟 𝑗 ) ↑𝑟 𝑦 ) ∘ ∪ 𝑗 ∈ ℕ ( 𝑑 ↑𝑟 𝑗 ) ) ) |
37 |
|
coss1 |
⊢ ( ( ∪ 𝑗 ∈ ℕ ( 𝑑 ↑𝑟 𝑗 ) ↑𝑟 𝑦 ) ⊆ ∪ 𝑘 ∈ ℕ ( 𝑑 ↑𝑟 𝑘 ) → ( ( ∪ 𝑗 ∈ ℕ ( 𝑑 ↑𝑟 𝑗 ) ↑𝑟 𝑦 ) ∘ ∪ 𝑗 ∈ ℕ ( 𝑑 ↑𝑟 𝑗 ) ) ⊆ ( ∪ 𝑘 ∈ ℕ ( 𝑑 ↑𝑟 𝑘 ) ∘ ∪ 𝑗 ∈ ℕ ( 𝑑 ↑𝑟 𝑗 ) ) ) |
38 |
37
|
adantl |
⊢ ( ( 𝑦 ∈ ℕ ∧ ( ∪ 𝑗 ∈ ℕ ( 𝑑 ↑𝑟 𝑗 ) ↑𝑟 𝑦 ) ⊆ ∪ 𝑘 ∈ ℕ ( 𝑑 ↑𝑟 𝑘 ) ) → ( ( ∪ 𝑗 ∈ ℕ ( 𝑑 ↑𝑟 𝑗 ) ↑𝑟 𝑦 ) ∘ ∪ 𝑗 ∈ ℕ ( 𝑑 ↑𝑟 𝑗 ) ) ⊆ ( ∪ 𝑘 ∈ ℕ ( 𝑑 ↑𝑟 𝑘 ) ∘ ∪ 𝑗 ∈ ℕ ( 𝑑 ↑𝑟 𝑗 ) ) ) |
39 |
15
|
coeq2i |
⊢ ( ∪ 𝑘 ∈ ℕ ( 𝑑 ↑𝑟 𝑘 ) ∘ ∪ 𝑗 ∈ ℕ ( 𝑑 ↑𝑟 𝑗 ) ) = ( ∪ 𝑘 ∈ ℕ ( 𝑑 ↑𝑟 𝑘 ) ∘ ∪ 𝑘 ∈ ℕ ( 𝑑 ↑𝑟 𝑘 ) ) |
40 |
|
trclfvcotrg |
⊢ ( ( t+ ‘ 𝑑 ) ∘ ( t+ ‘ 𝑑 ) ) ⊆ ( t+ ‘ 𝑑 ) |
41 |
|
oveq1 |
⊢ ( 𝑐 = 𝑑 → ( 𝑐 ↑𝑟 𝑘 ) = ( 𝑑 ↑𝑟 𝑘 ) ) |
42 |
41
|
iuneq2d |
⊢ ( 𝑐 = 𝑑 → ∪ 𝑘 ∈ ℕ ( 𝑐 ↑𝑟 𝑘 ) = ∪ 𝑘 ∈ ℕ ( 𝑑 ↑𝑟 𝑘 ) ) |
43 |
|
ovex |
⊢ ( 𝑑 ↑𝑟 𝑘 ) ∈ V |
44 |
4 43
|
iunex |
⊢ ∪ 𝑘 ∈ ℕ ( 𝑑 ↑𝑟 𝑘 ) ∈ V |
45 |
42 3 44
|
fvmpt |
⊢ ( 𝑑 ∈ V → ( t+ ‘ 𝑑 ) = ∪ 𝑘 ∈ ℕ ( 𝑑 ↑𝑟 𝑘 ) ) |
46 |
45
|
elv |
⊢ ( t+ ‘ 𝑑 ) = ∪ 𝑘 ∈ ℕ ( 𝑑 ↑𝑟 𝑘 ) |
47 |
46 46
|
coeq12i |
⊢ ( ( t+ ‘ 𝑑 ) ∘ ( t+ ‘ 𝑑 ) ) = ( ∪ 𝑘 ∈ ℕ ( 𝑑 ↑𝑟 𝑘 ) ∘ ∪ 𝑘 ∈ ℕ ( 𝑑 ↑𝑟 𝑘 ) ) |
48 |
40 47 46
|
3sstr3i |
⊢ ( ∪ 𝑘 ∈ ℕ ( 𝑑 ↑𝑟 𝑘 ) ∘ ∪ 𝑘 ∈ ℕ ( 𝑑 ↑𝑟 𝑘 ) ) ⊆ ∪ 𝑘 ∈ ℕ ( 𝑑 ↑𝑟 𝑘 ) |
49 |
39 48
|
eqsstri |
⊢ ( ∪ 𝑘 ∈ ℕ ( 𝑑 ↑𝑟 𝑘 ) ∘ ∪ 𝑗 ∈ ℕ ( 𝑑 ↑𝑟 𝑗 ) ) ⊆ ∪ 𝑘 ∈ ℕ ( 𝑑 ↑𝑟 𝑘 ) |
50 |
38 49
|
sstrdi |
⊢ ( ( 𝑦 ∈ ℕ ∧ ( ∪ 𝑗 ∈ ℕ ( 𝑑 ↑𝑟 𝑗 ) ↑𝑟 𝑦 ) ⊆ ∪ 𝑘 ∈ ℕ ( 𝑑 ↑𝑟 𝑘 ) ) → ( ( ∪ 𝑗 ∈ ℕ ( 𝑑 ↑𝑟 𝑗 ) ↑𝑟 𝑦 ) ∘ ∪ 𝑗 ∈ ℕ ( 𝑑 ↑𝑟 𝑗 ) ) ⊆ ∪ 𝑘 ∈ ℕ ( 𝑑 ↑𝑟 𝑘 ) ) |
51 |
36 50
|
eqsstrd |
⊢ ( ( 𝑦 ∈ ℕ ∧ ( ∪ 𝑗 ∈ ℕ ( 𝑑 ↑𝑟 𝑗 ) ↑𝑟 𝑦 ) ⊆ ∪ 𝑘 ∈ ℕ ( 𝑑 ↑𝑟 𝑘 ) ) → ( ∪ 𝑗 ∈ ℕ ( 𝑑 ↑𝑟 𝑗 ) ↑𝑟 ( 𝑦 + 1 ) ) ⊆ ∪ 𝑘 ∈ ℕ ( 𝑑 ↑𝑟 𝑘 ) ) |
52 |
51
|
ex |
⊢ ( 𝑦 ∈ ℕ → ( ( ∪ 𝑗 ∈ ℕ ( 𝑑 ↑𝑟 𝑗 ) ↑𝑟 𝑦 ) ⊆ ∪ 𝑘 ∈ ℕ ( 𝑑 ↑𝑟 𝑘 ) → ( ∪ 𝑗 ∈ ℕ ( 𝑑 ↑𝑟 𝑗 ) ↑𝑟 ( 𝑦 + 1 ) ) ⊆ ∪ 𝑘 ∈ ℕ ( 𝑑 ↑𝑟 𝑘 ) ) ) |
53 |
26 28 30 32 33 52
|
nnind |
⊢ ( 𝑖 ∈ ℕ → ( ∪ 𝑗 ∈ ℕ ( 𝑑 ↑𝑟 𝑗 ) ↑𝑟 𝑖 ) ⊆ ∪ 𝑘 ∈ ℕ ( 𝑑 ↑𝑟 𝑘 ) ) |
54 |
24 53
|
mprgbir |
⊢ ∪ 𝑖 ∈ ℕ ( ∪ 𝑗 ∈ ℕ ( 𝑑 ↑𝑟 𝑗 ) ↑𝑟 𝑖 ) ⊆ ∪ 𝑘 ∈ ℕ ( 𝑑 ↑𝑟 𝑘 ) |
55 |
|
iuneq1 |
⊢ ( ℕ = ( ℕ ∪ ℕ ) → ∪ 𝑘 ∈ ℕ ( 𝑑 ↑𝑟 𝑘 ) = ∪ 𝑘 ∈ ( ℕ ∪ ℕ ) ( 𝑑 ↑𝑟 𝑘 ) ) |
56 |
6 55
|
ax-mp |
⊢ ∪ 𝑘 ∈ ℕ ( 𝑑 ↑𝑟 𝑘 ) = ∪ 𝑘 ∈ ( ℕ ∪ ℕ ) ( 𝑑 ↑𝑟 𝑘 ) |
57 |
54 56
|
sseqtri |
⊢ ∪ 𝑖 ∈ ℕ ( ∪ 𝑗 ∈ ℕ ( 𝑑 ↑𝑟 𝑗 ) ↑𝑟 𝑖 ) ⊆ ∪ 𝑘 ∈ ( ℕ ∪ ℕ ) ( 𝑑 ↑𝑟 𝑘 ) |
58 |
1 2 3 4 4 6 23 23 57
|
comptiunov2i |
⊢ ( t+ ∘ t+ ) = t+ |