Step |
Hyp |
Ref |
Expression |
1 |
|
trclfvcotr |
⊢ ( 𝑅 ∈ V → ( ( t+ ‘ 𝑅 ) ∘ ( t+ ‘ 𝑅 ) ) ⊆ ( t+ ‘ 𝑅 ) ) |
2 |
|
fvprc |
⊢ ( ¬ 𝑅 ∈ V → ( t+ ‘ 𝑅 ) = ∅ ) |
3 |
|
0trrel |
⊢ ( ∅ ∘ ∅ ) ⊆ ∅ |
4 |
3
|
a1i |
⊢ ( ( t+ ‘ 𝑅 ) = ∅ → ( ∅ ∘ ∅ ) ⊆ ∅ ) |
5 |
|
id |
⊢ ( ( t+ ‘ 𝑅 ) = ∅ → ( t+ ‘ 𝑅 ) = ∅ ) |
6 |
5 5
|
coeq12d |
⊢ ( ( t+ ‘ 𝑅 ) = ∅ → ( ( t+ ‘ 𝑅 ) ∘ ( t+ ‘ 𝑅 ) ) = ( ∅ ∘ ∅ ) ) |
7 |
4 6 5
|
3sstr4d |
⊢ ( ( t+ ‘ 𝑅 ) = ∅ → ( ( t+ ‘ 𝑅 ) ∘ ( t+ ‘ 𝑅 ) ) ⊆ ( t+ ‘ 𝑅 ) ) |
8 |
2 7
|
syl |
⊢ ( ¬ 𝑅 ∈ V → ( ( t+ ‘ 𝑅 ) ∘ ( t+ ‘ 𝑅 ) ) ⊆ ( t+ ‘ 𝑅 ) ) |
9 |
1 8
|
pm2.61i |
⊢ ( ( t+ ‘ 𝑅 ) ∘ ( t+ ‘ 𝑅 ) ) ⊆ ( t+ ‘ 𝑅 ) |