Step |
Hyp |
Ref |
Expression |
1 |
|
trclfvcotr |
|- ( R e. _V -> ( ( t+ ` R ) o. ( t+ ` R ) ) C_ ( t+ ` R ) ) |
2 |
|
fvprc |
|- ( -. R e. _V -> ( t+ ` R ) = (/) ) |
3 |
|
0trrel |
|- ( (/) o. (/) ) C_ (/) |
4 |
3
|
a1i |
|- ( ( t+ ` R ) = (/) -> ( (/) o. (/) ) C_ (/) ) |
5 |
|
id |
|- ( ( t+ ` R ) = (/) -> ( t+ ` R ) = (/) ) |
6 |
5 5
|
coeq12d |
|- ( ( t+ ` R ) = (/) -> ( ( t+ ` R ) o. ( t+ ` R ) ) = ( (/) o. (/) ) ) |
7 |
4 6 5
|
3sstr4d |
|- ( ( t+ ` R ) = (/) -> ( ( t+ ` R ) o. ( t+ ` R ) ) C_ ( t+ ` R ) ) |
8 |
2 7
|
syl |
|- ( -. R e. _V -> ( ( t+ ` R ) o. ( t+ ` R ) ) C_ ( t+ ` R ) ) |
9 |
1 8
|
pm2.61i |
|- ( ( t+ ` R ) o. ( t+ ` R ) ) C_ ( t+ ` R ) |