Metamath Proof Explorer


Theorem trclfvcotrg

Description: The value of the transitive closure of a relation is always a transitive relation. (Contributed by RP, 8-May-2020)

Ref Expression
Assertion trclfvcotrg
|- ( ( t+ ` R ) o. ( t+ ` R ) ) C_ ( t+ ` R )

Proof

Step Hyp Ref Expression
1 trclfvcotr
 |-  ( R e. _V -> ( ( t+ ` R ) o. ( t+ ` R ) ) C_ ( t+ ` R ) )
2 fvprc
 |-  ( -. R e. _V -> ( t+ ` R ) = (/) )
3 0trrel
 |-  ( (/) o. (/) ) C_ (/)
4 3 a1i
 |-  ( ( t+ ` R ) = (/) -> ( (/) o. (/) ) C_ (/) )
5 id
 |-  ( ( t+ ` R ) = (/) -> ( t+ ` R ) = (/) )
6 5 5 coeq12d
 |-  ( ( t+ ` R ) = (/) -> ( ( t+ ` R ) o. ( t+ ` R ) ) = ( (/) o. (/) ) )
7 4 6 5 3sstr4d
 |-  ( ( t+ ` R ) = (/) -> ( ( t+ ` R ) o. ( t+ ` R ) ) C_ ( t+ ` R ) )
8 2 7 syl
 |-  ( -. R e. _V -> ( ( t+ ` R ) o. ( t+ ` R ) ) C_ ( t+ ` R ) )
9 1 8 pm2.61i
 |-  ( ( t+ ` R ) o. ( t+ ` R ) ) C_ ( t+ ` R )