| Step |
Hyp |
Ref |
Expression |
| 1 |
|
trclfvub |
|- ( R e. V -> ( t+ ` R ) C_ ( R u. ( dom R X. ran R ) ) ) |
| 2 |
1
|
adantr |
|- ( ( R e. V /\ Rel R ) -> ( t+ ` R ) C_ ( R u. ( dom R X. ran R ) ) ) |
| 3 |
|
simpr |
|- ( ( R e. V /\ Rel R ) -> Rel R ) |
| 4 |
|
relssdmrn |
|- ( Rel R -> R C_ ( dom R X. ran R ) ) |
| 5 |
|
ssequn1 |
|- ( R C_ ( dom R X. ran R ) <-> ( R u. ( dom R X. ran R ) ) = ( dom R X. ran R ) ) |
| 6 |
5
|
biimpi |
|- ( R C_ ( dom R X. ran R ) -> ( R u. ( dom R X. ran R ) ) = ( dom R X. ran R ) ) |
| 7 |
3 4 6
|
3syl |
|- ( ( R e. V /\ Rel R ) -> ( R u. ( dom R X. ran R ) ) = ( dom R X. ran R ) ) |
| 8 |
2 7
|
sseqtrd |
|- ( ( R e. V /\ Rel R ) -> ( t+ ` R ) C_ ( dom R X. ran R ) ) |
| 9 |
|
xpss |
|- ( dom R X. ran R ) C_ ( _V X. _V ) |
| 10 |
8 9
|
sstrdi |
|- ( ( R e. V /\ Rel R ) -> ( t+ ` R ) C_ ( _V X. _V ) ) |
| 11 |
|
df-rel |
|- ( Rel ( t+ ` R ) <-> ( t+ ` R ) C_ ( _V X. _V ) ) |
| 12 |
10 11
|
sylibr |
|- ( ( R e. V /\ Rel R ) -> Rel ( t+ ` R ) ) |