| Step |
Hyp |
Ref |
Expression |
| 1 |
|
trclfvub |
|- ( R e. V -> ( t+ ` R ) C_ ( R u. ( dom R X. ran R ) ) ) |
| 2 |
|
dmss |
|- ( ( t+ ` R ) C_ ( R u. ( dom R X. ran R ) ) -> dom ( t+ ` R ) C_ dom ( R u. ( dom R X. ran R ) ) ) |
| 3 |
1 2
|
syl |
|- ( R e. V -> dom ( t+ ` R ) C_ dom ( R u. ( dom R X. ran R ) ) ) |
| 4 |
|
dmun |
|- dom ( R u. ( dom R X. ran R ) ) = ( dom R u. dom ( dom R X. ran R ) ) |
| 5 |
|
dm0rn0 |
|- ( dom R = (/) <-> ran R = (/) ) |
| 6 |
|
xpeq1 |
|- ( dom R = (/) -> ( dom R X. ran R ) = ( (/) X. ran R ) ) |
| 7 |
|
0xp |
|- ( (/) X. ran R ) = (/) |
| 8 |
6 7
|
eqtrdi |
|- ( dom R = (/) -> ( dom R X. ran R ) = (/) ) |
| 9 |
8
|
dmeqd |
|- ( dom R = (/) -> dom ( dom R X. ran R ) = dom (/) ) |
| 10 |
|
dm0 |
|- dom (/) = (/) |
| 11 |
10
|
a1i |
|- ( dom R = (/) -> dom (/) = (/) ) |
| 12 |
|
eqcom |
|- ( dom R = (/) <-> (/) = dom R ) |
| 13 |
12
|
biimpi |
|- ( dom R = (/) -> (/) = dom R ) |
| 14 |
9 11 13
|
3eqtrd |
|- ( dom R = (/) -> dom ( dom R X. ran R ) = dom R ) |
| 15 |
5 14
|
sylbir |
|- ( ran R = (/) -> dom ( dom R X. ran R ) = dom R ) |
| 16 |
|
dmxp |
|- ( ran R =/= (/) -> dom ( dom R X. ran R ) = dom R ) |
| 17 |
15 16
|
pm2.61ine |
|- dom ( dom R X. ran R ) = dom R |
| 18 |
17
|
uneq2i |
|- ( dom R u. dom ( dom R X. ran R ) ) = ( dom R u. dom R ) |
| 19 |
|
unidm |
|- ( dom R u. dom R ) = dom R |
| 20 |
4 18 19
|
3eqtri |
|- dom ( R u. ( dom R X. ran R ) ) = dom R |
| 21 |
3 20
|
sseqtrdi |
|- ( R e. V -> dom ( t+ ` R ) C_ dom R ) |
| 22 |
|
trclfvlb |
|- ( R e. V -> R C_ ( t+ ` R ) ) |
| 23 |
|
dmss |
|- ( R C_ ( t+ ` R ) -> dom R C_ dom ( t+ ` R ) ) |
| 24 |
22 23
|
syl |
|- ( R e. V -> dom R C_ dom ( t+ ` R ) ) |
| 25 |
21 24
|
eqssd |
|- ( R e. V -> dom ( t+ ` R ) = dom R ) |