Metamath Proof Explorer


Theorem dmtrclfv

Description: The domain of the transitive closure is equal to the domain of the relation. (Contributed by RP, 9-May-2020)

Ref Expression
Assertion dmtrclfv
|- ( R e. V -> dom ( t+ ` R ) = dom R )

Proof

Step Hyp Ref Expression
1 trclfvub
 |-  ( R e. V -> ( t+ ` R ) C_ ( R u. ( dom R X. ran R ) ) )
2 dmss
 |-  ( ( t+ ` R ) C_ ( R u. ( dom R X. ran R ) ) -> dom ( t+ ` R ) C_ dom ( R u. ( dom R X. ran R ) ) )
3 1 2 syl
 |-  ( R e. V -> dom ( t+ ` R ) C_ dom ( R u. ( dom R X. ran R ) ) )
4 dmun
 |-  dom ( R u. ( dom R X. ran R ) ) = ( dom R u. dom ( dom R X. ran R ) )
5 dm0rn0
 |-  ( dom R = (/) <-> ran R = (/) )
6 xpeq1
 |-  ( dom R = (/) -> ( dom R X. ran R ) = ( (/) X. ran R ) )
7 0xp
 |-  ( (/) X. ran R ) = (/)
8 6 7 eqtrdi
 |-  ( dom R = (/) -> ( dom R X. ran R ) = (/) )
9 8 dmeqd
 |-  ( dom R = (/) -> dom ( dom R X. ran R ) = dom (/) )
10 dm0
 |-  dom (/) = (/)
11 10 a1i
 |-  ( dom R = (/) -> dom (/) = (/) )
12 eqcom
 |-  ( dom R = (/) <-> (/) = dom R )
13 12 biimpi
 |-  ( dom R = (/) -> (/) = dom R )
14 9 11 13 3eqtrd
 |-  ( dom R = (/) -> dom ( dom R X. ran R ) = dom R )
15 5 14 sylbir
 |-  ( ran R = (/) -> dom ( dom R X. ran R ) = dom R )
16 dmxp
 |-  ( ran R =/= (/) -> dom ( dom R X. ran R ) = dom R )
17 15 16 pm2.61ine
 |-  dom ( dom R X. ran R ) = dom R
18 17 uneq2i
 |-  ( dom R u. dom ( dom R X. ran R ) ) = ( dom R u. dom R )
19 unidm
 |-  ( dom R u. dom R ) = dom R
20 4 18 19 3eqtri
 |-  dom ( R u. ( dom R X. ran R ) ) = dom R
21 3 20 sseqtrdi
 |-  ( R e. V -> dom ( t+ ` R ) C_ dom R )
22 trclfvlb
 |-  ( R e. V -> R C_ ( t+ ` R ) )
23 dmss
 |-  ( R C_ ( t+ ` R ) -> dom R C_ dom ( t+ ` R ) )
24 22 23 syl
 |-  ( R e. V -> dom R C_ dom ( t+ ` R ) )
25 21 24 eqssd
 |-  ( R e. V -> dom ( t+ ` R ) = dom R )